DNA Microarray-Based Diagnostics

  • Mahsa Gharibi Marzancola
  • Abootaleb Sedighi
  • Paul C. H. Li
Part of the Methods in Molecular Biology book series (MIMB, volume 1368)


The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.

Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.

In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.

Key words

DNA microarray Stand-alone lab-on-a-chip (LOC) device Diagnostic tool Microfluidics Label-free detection Nanoarrays 


  1. 1.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470CrossRefPubMedGoogle Scholar
  2. 2.
    Alizadeh AA et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511CrossRefPubMedGoogle Scholar
  3. 3.
    Shaw-Smith C (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–248PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Storhoff JJ et al (2004) Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens Bioelectron 19:875–883CrossRefPubMedGoogle Scholar
  5. 5.
    Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147–157CrossRefPubMedGoogle Scholar
  6. 6.
    Simon R, Radmacher MD, Dobbin K, McShane LM (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95:14–18CrossRefPubMedGoogle Scholar
  7. 7.
    Jordan BR (2010) Is there a niche for DNA microarrays in molecular diagnostics? Expert Rev Mol Diagn 10:875–882CrossRefPubMedGoogle Scholar
  8. 8.
    Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492CrossRefPubMedGoogle Scholar
  9. 9.
    Brazma A et al (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29:365–371CrossRefPubMedGoogle Scholar
  10. 10.
    Chen JJ, Hsueh H-M, Delongchamp RR, Lin C-J, Tsai C-A (2007) Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data. BMC Bioinformatics 8:412PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Wang L, Li PC (2011) Microfluidic DNA microarray analysis: a review. Anal Chim Acta 687:12–27CrossRefPubMedGoogle Scholar
  12. 12.
    Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5:591–596CrossRefPubMedGoogle Scholar
  13. 13.
    Wang WU, Chen C, Lin K, Fang Y, Lieber CM (2005) Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc Natl Acad Sci U S A 102:3208–3212PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Crespi A et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRefPubMedGoogle Scholar
  15. 15.
    Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRefGoogle Scholar
  16. 16.
    Sedighi A, Wang L, Li PCH (2013) 2D nanofluidic bioarray for nucleic acid analysis. In: Iniewski K, Selimovic S (eds) Nanopatterning and nanoscale devices for biological applications. Taylor & Francis, CRC press, Boca Raton, pp 183–205Google Scholar
  17. 17.
    Hong J, Edel JB, deMello AJ (2009) Micro- and nanofluidic systems for high-throughput biological screening. Drug Discov Today 14:134–146CrossRefPubMedGoogle Scholar
  18. 18.
    Lagarde AE (2003) DNA microarrays: a molecular cloning manual. Am J Hum Genet 73:218PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Liu J, Williams BA, Gwirtz RM, Wold BJ, Quake S (2006) Enhanced signals and fast nucleic acid hybridization by microfluidic chaotic mixing. Angew Chem Int Ed 45:3618–3623CrossRefGoogle Scholar
  20. 20.
    Peytavi R (2005) Microfluidic device for rapid (<15 min) automated microarray hybridization. Clin Chem 51:1836–1844CrossRefPubMedGoogle Scholar
  21. 21.
    Campàs M, Katakis I (2004) DNA biochip arraying, detection and amplification strategies. Trends Anal Chem 23:49–62CrossRefGoogle Scholar
  22. 22.
    Lee HJ, Goodrich TT, Corn RM (2001) SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal Chem 73:5525–5531CrossRefGoogle Scholar
  23. 23.
    Situma C et al (2005) Fabrication of DNA microarrays onto poly(methyl methacrylate) with ultraviolet patterning and microfluidics for the detection of low-abundant point mutations. Anal Biochem 340:123–135CrossRefPubMedGoogle Scholar
  24. 24.
    Wang L, Li PCH (2007) Flexible microarray construction and fast DNA hybridization conducted on a microfluidic chip for greenhouse plant fungal pathogen detection. J Agric Food Chem 55:10509–10516CrossRefPubMedGoogle Scholar
  25. 25.
    Sedighi A, Li PC (2013) Gold nanoparticle assists SNP detection at room temperature in the nanoBioArray chip. Int J Mat Sci Eng 1(1):45–49Google Scholar
  26. 26.
    Bouchie A (2002) Organic farmers sue GMO producers. Nat Biotechnol 20:210CrossRefPubMedGoogle Scholar
  27. 27.
    Meneses-Lorente G et al (2003) An evaluation of a low-density DNA microarray using cytochrome P450 inducers. Chem Res Toxicol 16:1070–1077CrossRefPubMedGoogle Scholar
  28. 28.
    Sedighi A, Li PCH (2014) Kras gene codon 12 mutation detection enabled by gold nanoparticles conducted in a nanobioarray chip. Anal Biochem 448:58–64CrossRefPubMedGoogle Scholar
  29. 29.
    Sedighi A, Li PCH, Pekcevik IC, Gates BD (2014) A proposed mechanism of the influence of gold nanoparticles on DNA hybridization. ACS Nano 8:6765–6777CrossRefPubMedGoogle Scholar
  30. 30.
    Chen B et al (2011) Rapid screening of phenylketonuria using a CD microfluidic device. J Chromatogr A 1218:1907–1912CrossRefPubMedGoogle Scholar
  31. 31.
    Peng XY (Larry), Li PCH, Yu H-Z, Parameswaran M (Ash), Chou WL (Jacky) (2007) Spiral microchannels on a CD for DNA hybridizations. Sens Actuators B Chem 128:64–69Google Scholar
  32. 32.
    Peng XY, Li PCH (2008) Centrifugal pumping in the equiforce spiral microchannel. Can J Pure App Sci 2:551–556Google Scholar
  33. 33.
    Wang L, Kropinski M-C, Li PCH (2011) Analysis and modeling of flow in rotating spiral microchannels: towards math-aided design of microfluidic systems using centrifugal pumping. Lab Chip 11:2097CrossRefPubMedGoogle Scholar
  34. 34.
    Wang L, Li PCH, Yu H-Z, Parameswaran AM (2008) Fungal pathogenic nucleic acid detection achieved with a microfluidic microarray device. Anal Chim Acta 610:97–104CrossRefPubMedGoogle Scholar
  35. 35.
    Wang L, Li PCH (2010) Optimization of a microfluidic microarray device for the fast discrimination of fungal pathogenic DNA. Anal Biochem 400:282–288CrossRefPubMedGoogle Scholar
  36. 36.
    Chen H, Wang L, Li PCH (2008) Nucleic acid microarrays created in the double-spiral format on a circular microfluidic disk. Lab Chip 8:826CrossRefPubMedGoogle Scholar
  37. 37.
    Epstein JR, Biran I, Walt DR (2002) Fluorescence-based nucleic acid detection and microarrays. Anal Chim Acta 469:3–36CrossRefGoogle Scholar
  38. 38.
    Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139CrossRefPubMedGoogle Scholar
  39. 39.
    Fang X, Liu X, Schuster S, Tan W (1999) Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc 121:2921–2922CrossRefGoogle Scholar
  40. 40.
    Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73:1–7CrossRefPubMedGoogle Scholar
  41. 41.
    Koehne J et al (2003) Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology 14:1239CrossRefPubMedGoogle Scholar
  42. 42.
    Lee K et al (2013) Label-free DNA microarray bioassays using a near-field scanning microwavemicroscope. Biosens Bioelectron 42:326–331CrossRefPubMedGoogle Scholar
  43. 43.
    Özkumur E et al (2010) Label-free microarray imaging for direct detection of DNA hybridization and single-nucleotide mismatches. Biosens Bioelectron 25:1789–1795PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Tsarfati-BarAd I, Sauer U, Preininger C, Gheber LA (2011) Miniaturized protein arrays: model and experiment. Biosens Bioelectron 26:3774–3781CrossRefPubMedGoogle Scholar
  45. 45.
    Xu S, Miller S, Laibinis PE, Liu G (1999) Fabrication of nanometer scale patterns within self-assembled monolayers by nanografting. Langmuir 15:7244–7251CrossRefGoogle Scholar
  46. 46.
    Demers LM et al (2002) Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296:1836–1838CrossRefPubMedGoogle Scholar
  47. 47.
    Truskett VN, Watts MPC (2006) Trends in imprint lithography for biological applications. Trends Biotechnol 24:312–317CrossRefPubMedGoogle Scholar
  48. 48.
    Moorcroft MJ et al (2005) In situ oligonucleotide synthesis on poly(dimethylsiloxane): a flexible substrate for microarray fabrication. Nucleic Acids Res 33:e75PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Yu AA et al (2005) Supramolecular nanostamping: using DNA as movable type. Nano Lett 5:1061–1064CrossRefPubMedGoogle Scholar
  50. 50.
    Lin H, Sun L, Crooks RM (2005) Replication of a DNA microarray. J Am Chem Soc 127:11210–11211CrossRefPubMedGoogle Scholar
  51. 51.
    Akbulut O et al (2007) Application of supramolecular nanostamping to the replication of DNA nanoarrays. Nano Lett 7:3493–3498CrossRefPubMedGoogle Scholar
  52. 52.
    Anderson RC, Su X, Bogdan GJ, Fenton J (2000) A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res 28:e60PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831CrossRefPubMedGoogle Scholar
  54. 54.
    Trau D et al (2002) Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal Chem 74:5480–5486CrossRefPubMedGoogle Scholar
  55. 55.
    Lee TM-H, Carles MC, Hsing I-M (2003) Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection. Lab Chip 3:100–105CrossRefPubMedGoogle Scholar
  56. 56.
    Yeung S-W, Lee TM-H, Cai H, Hsing I-M (2006) A DNA biochip for on-the-spot multiplexed pathogen identification. Nucleic Acids Res 34:e118PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Liu RH et al (2006) Fully integrated miniature device for automated gene expression DNA microarray processing. Anal Chem 78:1980–1986CrossRefPubMedGoogle Scholar
  58. 58.
    Choi JY et al (2012) An integrated allele-specific polymerase chain reaction-microarray chip for multiplex single nucleotide polymorphism typing. Lab Chip 12:5146–5154CrossRefPubMedGoogle Scholar
  59. 59.
    Simon R (2008) Lost in translation: problems and pitfalls in translating laboratory observations to clinical utility. Eur J Cancer 44:2707–2713PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Van De Vijver MJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009CrossRefPubMedGoogle Scholar
  61. 61.
    Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46CrossRefPubMedGoogle Scholar
  62. 62.
    Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151CrossRefPubMedGoogle Scholar
  63. 63.
    Molecular Diagnostics Market & Forecast (By Application, Technology, Countries, Companies & Clinical Trials) to 2017: Global Analysis, ReportLinker (2013)
  64. 64.
    Ledford H (2008) The death of microarrays? Nat News 455:847CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mahsa Gharibi Marzancola
    • 1
  • Abootaleb Sedighi
    • 1
  • Paul C. H. Li
    • 1
  1. 1.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations