Glycocalyx Remodeling with Glycopolymer-Based Proteoglycan Mimetics

  • Mia L. Huang
  • Raymond A. A. Smith
  • Greg W. Trieger
  • Kamil GodulaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1367)


The cellular glycocalyx controls many of the crucial signaling pathways involved in cellular development. Synthetic materials that can mimic the multivalency and three-dimensional architecture of native glycans serve as important tools for deciphering and exploiting the roles of these glycans. Here we describe a chemical approach for the engineering of growth-factor interactions at the surfaces of stem cells using synthetic glycomimetic materials, with an eye towards promoting their commitment towards specific cell lineages with therapeutic potential.

Key words

Glycan microarrays Glycopolymers Glycosaminoglycans Proteoglycans Stem cells Stem cell differentiation 


  1. 1.
    Varki A, Freeze HH, Vacquier VD (2009) Essentials of glycobiology, 2nd edn. CSHL Press, New York, pp. 531–536.Google Scholar
  2. 2.
    Yayon A, Klagsbrun M, Esko JD et al (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848.CrossRefPubMedGoogle Scholar
  3. 3.
    Kreuger J, Spillman D, Li JP et al (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Chem Biol 174:323–327.Google Scholar
  4. 4.
    Kunath T, Saba-El-Leil MK, Almousailleakh M et al (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:2895–2902.CrossRefPubMedGoogle Scholar
  5. 5.
    Johnson CE, Ward CM, Wilson V et al (2007) Essential alterations of heparan sulfate during the differentiation of embryonic stem cells to Sox1-enhanced green fluorescent protein-expressing neural progenitor cells. Stem Cells 25:1913–1923.CrossRefPubMedGoogle Scholar
  6. 6.
    Chiefari J, Chong YK, Ercole F et al (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562CrossRefGoogle Scholar
  7. 7.
    Kuzmin A, Poloukhtine A, Wolfert MA et al (2010) Surface functionalization using catalyst-free azide-alkyne cycloaddition. Bioconjugate Chem 21:2076–2085.CrossRefGoogle Scholar
  8. 8.
    Rabuka D, Forstner MB, Groves JT et al (2008) Noncovalent cell surface engineering: incorporation of bioactive synthetic glycopolymers into cellular membranes. J Am Chem Soc 130:5947–5953.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Huang ML, Smith RAA, Trieger GW et al (2014) Glycocalyx remodeling with proteoglycan mimetics promotes neural specification in embryonic stem cells. J Am Chem Soc 136:10565–10568.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Godula K, Umbel ML, Rabuka D et al (2009) Control of the molecular orientation of membrane-anchored biomimetic glycopolymers. J Am Chem Soc 131:10263–10268.Google Scholar
  11. 11.
    Xin L, Wei G, Shi Z et al (2000) Disruption of gastrulation and heparan sulfate biosynthesis in Ext1-deficient mice. Dev Biol 224:299–311.CrossRefGoogle Scholar
  12. 12.
    Ying Q-L, Stavridis M, Griffiths D et al (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21:183–186.CrossRefPubMedGoogle Scholar
  13. 13.
    Lawrence R, Lu H, Rosenberg RD et al (2008) Disaccharide structure code for the easy representation of constituent oligosaccharides from glycosaminoglycans. Nat Methods 5:291–292.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mia L. Huang
    • 1
  • Raymond A. A. Smith
    • 1
  • Greg W. Trieger
    • 1
  • Kamil Godula
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryUniversity of California-San DiegoLa JollaUSA

Personalised recommendations