Chromatin Immunoprecipitation Assay to Identify Genomic Binding Sites of Regulatory Factors

  • Meike Wagner
  • Johannes Jung
  • Michael Koslowski
  • Özlem Türeci
  • Vijay K. TiwariEmail author
  • Ugur SahinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1366)


DNA–protein interactions are vital to fundamental cellular events including transcription, replication, DNA repair, and recombination. Thus, their study holds the key to our understanding of mechanisms underlying normal development and homeostasis as well as disease. Transcriptional regulation is a highly complex process that involves recruitment of numerous factors resulting in formation of multi-protein complexes at gene promoters to regulate gene expression. The studied proteins can be, for example, transcription factors, epigenetic regulators, co-activators, co-repressors, or ligand-activated nuclear receptors as estrogen receptor-α (ERα) bound either directly to the DNA or indirectly by interaction with other DNA-bound factors. Chromatin immunoprecipitation (ChIP) assay is a powerful method to study interactions of proteins and a specific genomic DNA region. Recruitment of ERα to promoters of estrogen-dependent genes is a common mechanism to activate or enhance gene transcription in breast cancer thus promoting tumor progression. In this chapter, we demonstrate a stepwise protocol for ChIP assay using binding of ERα to its genomic targets after stimulation with 17β-estradiol (E2) in breast cancer cells as an example.

Key words

Chromatin ChIP assay DNA–protein interactions Gene regulation Estrogensignaling Cancer Estrogenreceptorα 



Research in the laboratory of V.K.T. is supported by the Wilhelm Sander Stiftung 2012.009.2, EpiGeneSys RISE1 program, Marie Curie CIG 322210 and Deutsche Forschungsgemeinschaft (DFG) Grant TI 799/1-1.


  1. 1.
    Thakurela S, Garding A, Jung J et al (2013) Gene regulation and priming by topoisomerase IIα in embryonic stem cells. Nat Commun 4:2478CrossRefGoogle Scholar
  2. 2.
    Tiwari VK, Stadler MB, Wirbelauer C et al (2012) A chromatin-modifying function of JNK during stem cell differentiation. Nat Genet 44:94–100CrossRefGoogle Scholar
  3. 3.
    Schnitt SJ (2010) Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol 23(Suppl 2):S60–S64CrossRefGoogle Scholar
  4. 4.
    Thomas C, Gustafsson J-Å (2011) The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 11:597–608CrossRefGoogle Scholar
  5. 5.
    Cheskis BJ, Greger JG, Nagpal S et al (2007) Signaling by estrogens. J Cell Physiol 213:610–617CrossRefGoogle Scholar
  6. 6.
    Hall JM, Couse JF, Korach KS (2001) The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 276:36869–36872CrossRefGoogle Scholar
  7. 7.
    Safe S, Kim K, Kim K (2008) Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol 41:263–275CrossRefGoogle Scholar
  8. 8.
    Robinson-Rechavi M, Escriva Garcia H, Laudet V (2003) The nuclear receptor superfamily. J Cell Sci 116:585–586CrossRefGoogle Scholar
  9. 9.
    Dong J, Tsai-Morris C-H, Dufau ML (2006) A novel estradiol/estrogen receptor alpha-dependent transcriptional mechanism controls expression of the human prolactin receptor. J Biol Chem 281:18825–18836CrossRefGoogle Scholar
  10. 10.
    Koslowski M, Türeci O, Biesterfeld S et al (2009) Selective activation of trophoblast-specific PLAC1 in breast cancer by CCAAT/enhancer-binding protein beta (C/EBPbeta) isoform 2. J Biol Chem 284:28607–28615CrossRefGoogle Scholar
  11. 11.
    Wagner M, Koslowski M, Paret C et al (2013) NCOA3 is a selective co-activator of estrogen receptor α-mediated transactivation of PLAC1 in MCF-7 breast cancer cells. BMC Cancer 13:570CrossRefGoogle Scholar
  12. 12.
    Carey MF, Peterson CL, Smale ST (2009) Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc pdb.prot5279Google Scholar
  13. 13.
    O’Neill LP, Turner BM (1996) Immunoprecipitation of chromatin. Methods Enzymol 274:189–197CrossRefGoogle Scholar
  14. 14.
    Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837CrossRefGoogle Scholar
  15. 15.
    Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657CrossRefGoogle Scholar
  16. 16.
    Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:1351–1359CrossRefGoogle Scholar
  17. 17.
    Schmidt D, Wilson MD, Spyrou C et al (2009) ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods 48:240–248CrossRefGoogle Scholar
  18. 18.
    Grober OMV, Mutarelli M, Giurato G et al (2011) Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genomics 12:36CrossRefGoogle Scholar
  19. 19.
    Ross-Innes CS, Stark R, Teschendorff AE et al (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481:389–393CrossRefGoogle Scholar
  20. 20.
    Stender JD, Kim K, Charn TH et al (2010) Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol 30:3943–3955CrossRefGoogle Scholar
  21. 21.
    Zeng P-Y, Vakoc CR, Chen Z-C et al (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41:694, 696, 698CrossRefGoogle Scholar
  22. 22.
    Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395–1402CrossRefGoogle Scholar
  23. 23.
    O’Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31:76–82CrossRefGoogle Scholar
  24. 24.
    Levenson AS, Jordan VC (1997) MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res 57:3071–3078PubMedGoogle Scholar
  25. 25.
    Soule HD, Vazguez J, Long A et al (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51:1409–1416CrossRefGoogle Scholar
  26. 26.
    Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  27. 27.
    Métivier R, Penot G, Hübner MR et al (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:751–763CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Meike Wagner
    • 1
    • 2
  • Johannes Jung
    • 3
  • Michael Koslowski
    • 2
  • Özlem Türeci
    • 4
  • Vijay K. Tiwari
    • 3
    Email author
  • Ugur Sahin
    • 1
    • 2
    • 5
    Email author
  1. 1.Division of Experimental and Translational Oncology, Institute of ImmunologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
  2. 2.TRON gGmbH-Translational OncologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
  3. 3.Institute of Molecular Biology (IMB)MainzGermany
  4. 4.Ganymed Pharmaceuticals AGMainzGermany
  5. 5.BioNTech AGMainzGermany

Personalised recommendations