PepFect6 Mediated SiRNA Delivery into Organotypic Cultures

  • Suvarna Dash-WaghEmail author
  • Ülo Langel
  • Mats Ulfendahl
Part of the Methods in Molecular Biology book series (MIMB, volume 1364)


Gene silencing by small interfering RNA (SiRNA) is an attractive therapeutic approach for pathological disorders that targets a specific gene. However, its applications are limited, as naked RNA is rapidly degraded by RNases and is inadequately internalized by the target cells in the body. Several viral and nonviral vectors have been described to improve the delivery of SiRNAs both in cultured cells as well as in vivo. Increasing evidence suggests that cell-penetrating peptides (CPPs) are an efficient, non-cytotoxic tool for intracellular delivery of SiRNA. Recently, a new peptide, PepFect6 (PF6), based system has been described for efficient SiRNA delivery in various cell types. PF6 is an amphipathic stearyl-TP10 peptide carrying a pH titratable trifluoromethylquinoline moiety that facilitate endosomal release. PF6 forms stable non-covalent complexes with SiRNA. Upon internalization, the complexes rapidly escape the endosomal compartment, resulting in robust RNA interference (RNAi) responses. This chapter describes a protocol to use the PF6-nanoparticle technology for SiRNA delivery into organotypic cultures of the inner ear i.e., cochlea. We also highlight different critical points in the peptide/SiRNA complex preparation, transfection and in analyzing the efficacy of PF6-SiRNA associated RNAi response.

Key words

Cell-penetrating peptides (CPPs) PepFect6 (PF6) SiRNA Inner ear Cochlea Organotypic cultures Fluorescence recovery after photobleaching (FRAP) 


  1. 1.
    Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270CrossRefPubMedGoogle Scholar
  2. 2.
    Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59:75–86PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Andaloussi SE, Lehto T, Mager I, Rosenthal-Aizman K, Oprea II, Simonson OE, Sork H, Ezzat K, Copolovici DM, Kurrikoff K, Viola JR, Zaghloul EM, Sillard R, Johansson HJ, Said Hassane F, Guterstam P, Suhorutsenko J, Moreno PM, Oskolkov N, Halldin J, Tedebark U, Metspalu A, Lebleu B, Lehtio J, Smith CI, Langel U (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39:3972–3987CrossRefPubMedGoogle Scholar
  4. 4.
    Crombez L, Morris MC, Dufort S, Aldrian-Herrada G, Nguyen Q, Mc Master G, Coll JL, Heitz F, Divita G (2009) Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 37:4559–4569PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Kim WJ, Christensen LV, Jo S, Yockman JW, Jeong JH, Kim YH, Kim SW (2006) Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther 14:343–350CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang B, Mallapragada S (2011) The mechanism of selective transfection mediated by pentablock copolymers; part II: nuclear entry and endosomal escape. Acta Biomater 7:1580–1587CrossRefPubMedGoogle Scholar
  7. 7.
    Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, Heitz F, Divita G (2009) A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 17:95–103PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Mae M, El Andaloussi S, Lundin P, Oskolkov N, Johansson HJ, Guterstam P, Langel U (2009) A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J Control Release 134:221–227CrossRefPubMedGoogle Scholar
  9. 9.
    Anko M, Majhenc J, Kogej K, Sillard R, Langel U, Anderluh G, Zorko M (2012) Influence of stearyl and trifluoromethylquinoline modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane. Biochim Biophys Acta 1818:915–924CrossRefPubMedGoogle Scholar
  10. 10.
    Suhorutsenko J, Oskolkov N, Arukuusk P, Kurrikoff K, Eriste E, Copolovici DM, Langel U (2011) Cell-penetrating peptides, PepFects, show no evidence of toxicity and immunogenicity in vitro and in vivo. Bioconjug Chem 22:2255–2262CrossRefPubMedGoogle Scholar
  11. 11.
    van Asbeck AH, Beyerle A, McNeill H, Bovee-Geurts PH, Lindberg S, Verdurmen WP, Hallbrink M, Langel U, Heidenreich O, Brock R (2013) Molecular parameters of siRNA—cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano 7:3797–3807CrossRefPubMedGoogle Scholar
  12. 12.
    Maeda Y, Fukushima K, Nishizaki K, Smith RJ (2005) In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet 14:1641–1650CrossRefPubMedGoogle Scholar
  13. 13.
    Ortolano S, Di Pasquale G, Crispino G, Anselmi F, Mammano F, Chiorini JA (2008) Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proc Natl Acad Sci U S A 105:18776–18781PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Parker M, Brugeaud A, Edge AS (2010) Primary culture and plasmid electroporation of the murine organ of Corti. J Vis ExpGoogle Scholar
  15. 15.
    Dash-Wagh S, Jacob S, Lindberg S, Fridberger A, Langel U, Ulfendahl M (2012) Intracellular delivery of short interfering RNA in rat organ of Corti using a cell-penetrating peptide PepFect6. Mol Ther Nucleic Acids 1, e61PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Suvarna Dash-Wagh
    • 1
    Email author
  • Ülo Langel
    • 2
  • Mats Ulfendahl
    • 1
  1. 1.Department of NeuroscienceKarolinska InstitutetStockholmSweden
  2. 2.Department of NeurochemistryStockholm UniversityStockholmSweden

Personalised recommendations