Introduction to Proteomics Technologies

  • Christof Lenz
  • Hassan DihaziEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1362)


Compared to genomics or transcriptomics, proteomics is often regarded as an “emerging technology,” i.e., as not having reached the same level of maturity. While the successful implementation of proteomics workflows and technology still requires significant levels of expertise and specialization, great strides have been made to make the technology more powerful, streamlined and accessible. In 2014, two landmark studies published the first draft versions of the human proteome.

We aim to provide an introduction specifically into the background of mass spectrometry (MS)-based proteomics. Within the field, mass spectrometry has emerged as a core technology. Coupled to increasingly powerful separations and data processing and bioinformatics solution, it allows the quantitative analysis of whole proteomes within a matter of days, a timescale that has made global comparative proteome studies feasible at last. We present and discuss the basic concepts behind proteomics mass spectrometry and the accompanying topic of protein and peptide separations, with a focus on the properties of datasets emerging from such studies.

Key words

Proteomics 2-DE Electrophoresis Mass spectrometry Separations 


  1. 1.
    Wilhelm M, Schlegl J, Hahne H et al (2014) Mass-spectrometry-based draft oft he human proteome. Nature 509:582–587PubMedCrossRefGoogle Scholar
  2. 2.
    Kim MS, Pinto SM, Getnet D et al (2014) A draft map of the human proteome. Nature 509:575–581PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197PubMedCrossRefGoogle Scholar
  4. 4.
    Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846PubMedCrossRefGoogle Scholar
  5. 5.
    Rappsilber J, Mann M (2002) What does it mean to identify a protein in proteomics? Trends Biochem Sci 27:74–78PubMedCrossRefGoogle Scholar
  6. 6.
    Smith LM, Kelleher NL (2013) Proteoform: a single term describing protein complexity. Nat Methods 10:186–187PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Schlüter H, Apweiler R, Holzhütter HG et al (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J. doi: 10.1186/1752-153X-3-11 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Lenz C, Urlaub H (2014) Separation methodology to improve proteome coverage depth. Expert Rev Proteomics 11:409–414PubMedCrossRefGoogle Scholar
  9. 9.
    Catherman AD, Skinner OS, Kelleher NL (2014) Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun 445:683–693PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ahlf DR, Thomas PM, Kelleher NL (2013) Developing top down proteomics to maximize proteome and sequence coverage from cells and tissues. Curr Opin Chem Biol 17:787–794PubMedCrossRefGoogle Scholar
  11. 11.
    Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412PubMedGoogle Scholar
  12. 12.
    Hanash SM (2001) 2D or not 2D is there a future for 2D gels in proteomics? Proteomics 1:635–637PubMedGoogle Scholar
  13. 13.
    Dihazi H, Müller GA (2007) The urinary proteome: a tool to discover biomarker of kidney diseases. Expert Rev Proteomics 4:39–50PubMedCrossRefGoogle Scholar
  14. 14.
    O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021PubMedCentralPubMedGoogle Scholar
  15. 15.
    O’Farrell PZ, Goodman HM, O’Farrell PH (1977) High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1141PubMedCrossRefGoogle Scholar
  16. 16.
    Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243PubMedGoogle Scholar
  17. 17.
    Lilley KS, Razzaq A, Dupree P (2002) Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol 6:46–50PubMedCrossRefGoogle Scholar
  18. 18.
    Switzer RC III, Merril CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98:231–237PubMedCrossRefGoogle Scholar
  19. 19.
    Steinberg TH, Jones LJ, Haugland RP, Singer VL (1996) SYPRO Orange and SYPRO Red protein gel stains: one-step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal Biochem 239:223–237PubMedCrossRefGoogle Scholar
  20. 20.
    Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 771:3–31PubMedCrossRefGoogle Scholar
  21. 21.
    Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077PubMedCrossRefGoogle Scholar
  22. 22.
    Gharbi S, Gaffney P, Yang A et al (2002) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1:91–98PubMedCrossRefGoogle Scholar
  23. 23.
    Dihazi H, Dihazi GH, Jahn O et al (2011) Multipotent adult germline stem cells and embryonic stem cells functional proteomics revealed an important role of eukaryotic initiation factor 5A (Eif5a) in stem cell differentiation. J Proteome Res 10:1962–1973PubMedCrossRefGoogle Scholar
  24. 24.
    Dihazi H, Dihazi GH, Nolte J et al (2009) Differential proteomic analysis of multipotent adult germline stem cells and embryonic stem cells reveals high proteome similarity. J Proteome Res 8:5497–5510PubMedCrossRefGoogle Scholar
  25. 25.
    Zuo X, Speicher DW (2002) Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two-dimensional electrophoresis. Proteomics 2:58–68PubMedCrossRefGoogle Scholar
  26. 26.
    Lin D, Tabb DL, Yates JR III (2003) Large-scale protein identification using MS. Biochim Biophys Acta 1646:1–10PubMedCrossRefGoogle Scholar
  27. 27.
    Link AJ, Eng J, Schieltz DM et al (1999) Direct analysis of protein complexes using MS. Nat Biotechnol 17:676–682PubMedCrossRefGoogle Scholar
  28. 28.
    Issaq HJ, Chan KC, Janini GM et al (2005) Multidimensional separation of peptides for effective proteomic analysis. J Chromatogr B 817:35–47CrossRefGoogle Scholar
  29. 29.
    Majors RE (1980) Multidimensional high performance liquid chromatography. J Chromatogr Sci 18:571–580CrossRefGoogle Scholar
  30. 30.
    Giddings JC (1984) Twodimensional separations: concept and promise. Anal Chem 56:1258A–1264APubMedCrossRefGoogle Scholar
  31. 31.
    Cortes HJ (ed) (1990) Multidimensional chromatography. Techniques and applications. Marcel Dekker, New YorkGoogle Scholar
  32. 32.
    Anderegg RJ, Wagner DS, Blackburn RK, Opiteck GJ, Jorgenson JW (1997) A multidimensional approach to protein characterization. J Protein Chem 16:523–526PubMedCrossRefGoogle Scholar
  33. 33.
    Neverova I, Van Eyk JE (2005) Role of chromatographic techniques in proteomic analysis. J Chromatogr B 815:51–63CrossRefGoogle Scholar
  34. 34.
    Neverova I, Van Eyk JE (2002) Application of reversed phase high performance liquid chromatography for subproteomic analysis of cardiac muscle. Proteomics 2:22–31PubMedCrossRefGoogle Scholar
  35. 35.
    Zhu H, Klemic JF, Chang S et al (2000) Analysis of yeast protein kinases using protein chips. Nat Genet 26:283–289PubMedCrossRefGoogle Scholar
  36. 36.
    Lueking A, Horn M, Eickhoff H et al (1999) Protein microarrays for gene expression and antibody screening. Anal Biochem 270:103–111PubMedCrossRefGoogle Scholar
  37. 37.
    MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32:S526–S532CrossRefGoogle Scholar
  38. 38.
    Schmidt A, Karas M, Dülcks T (2003) Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J Am Soc Mass Spectrom 14:492–500PubMedCrossRefGoogle Scholar
  39. 39.
    Luo Q, Gu Y, Wu S-L et al (2008) Two-dimensional strong cation exchange/porous layer open tubular/mass spectrometry for ultratrace proteomic analysis using a 10 μm id poly(styrene-divinylbenzen porous layer open tubular column with an on-line triphasic trapping column. Electrophoresis 29:1804–1811CrossRefGoogle Scholar
  40. 40.
    Sandra K, Moshir M, D’hondt F et al (2008) Highly efficient peptide separations in proteomics. Part 1. Unidimensional high performance liquid chromatography. J Chromatogr B 866:48–63CrossRefGoogle Scholar
  41. 41.
    Köcher T, Pichler P, Swart R et al (2012) Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nat Protoc 7:882–890PubMedCrossRefGoogle Scholar
  42. 42.
    Hsieh EJ, Bereman MS, Durand S et al (2013) Effects of column and gradient lengths on peak capacity and peptide identification in nanoflow LC-MS/MS of complex proteomics samples. J Am Soc Mass Spectrom 24:148–153PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Sandra K, Moshir M, D’hondt F et al (2009) Highly efficient peptide separations in proteomics. Part 2. Bi- and multidimensional liquid-based separation techniques. J Chromatogr B 877:1019–1039CrossRefGoogle Scholar
  44. 44.
    Haubitz M, Wittke S, Weissinger EM et al (2005) Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 67:2313–2320PubMedCrossRefGoogle Scholar
  45. 45.
    Weissinger EM, Wittke S, Kaiser T et al (2004) Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int 65:2426–2434PubMedCrossRefGoogle Scholar
  46. 46.
    Wittke S, Fliser D, Haubitz M et al (2003) Determination of peptides and proteins in human urine with capillary electrophoresis-mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J Chromatogr A 1013:173–181PubMedCrossRefGoogle Scholar
  47. 47.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301PubMedCrossRefGoogle Scholar
  48. 48.
    Karas M, Glückmann M, Schäfer J (2000) Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom 35:1–12PubMedCrossRefGoogle Scholar
  49. 49.
    Stevenson E, Breuker K, Zenobi R (2000) Internal energies of analyte ions generated from different matrix-assisted laser desorption/ionization matrices. J Mass Spectrom 35:1035–1041PubMedCrossRefGoogle Scholar
  50. 50.
    Krüger R, Pfenninger A, Fournier I et al (2000) Analyte incorporation and ionization in matrix-assisted laser desorption/ionization visualized by pH indicator molecular probes. Anal Chem 73:5812–5821CrossRefGoogle Scholar
  51. 51.
    Patel R (2015) MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem 61:100–111PubMedCrossRefGoogle Scholar
  52. 52.
    Whitehouse CM, Dreyer RN, Yamashita M et al (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679PubMedCrossRefGoogle Scholar
  53. 53.
    Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71PubMedCrossRefGoogle Scholar
  54. 54.
    Emmett MR, Caprioli R (1994) Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins. J Am Soc Mass Spectrom 5:605–613PubMedCrossRefGoogle Scholar
  55. 55.
    Schwartz JC, Jardine I (1996) Quadrupole ion trap mass spectrometry. Methods Enzymol 270:552–586PubMedCrossRefGoogle Scholar
  56. 56.
    Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865PubMedCrossRefGoogle Scholar
  57. 57.
    Hines WM, Parker K, Peltier J et al (1998) Protein identification and protein characterization by high-performance time-of-flight mass spectrometry. J Protein Chem 17:525–526PubMedGoogle Scholar
  58. 58.
    Beinvenut WV, Daon C, Pasquarello C et al (2002) Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics 2:868–876CrossRefGoogle Scholar
  59. 59.
    Hardman M, Makarov AA (2003) Interfacing the orbitrap mass analyser to an electrospray ion source. Anal Chem 75:1699–1705PubMedCrossRefGoogle Scholar
  60. 60.
    Zubarev R, Makarov AA (2013) Orbitrap mass spectrometry. Anal Chem 85:5288–5296PubMedCrossRefGoogle Scholar
  61. 61.
    Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601PubMedCrossRefGoogle Scholar
  62. 62.
    Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711PubMedCrossRefGoogle Scholar
  63. 63.
    Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884PubMedCrossRefGoogle Scholar
  64. 64.
    Carr SA, Huddleston MJ, Annan RS (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem 239:180–192PubMedCrossRefGoogle Scholar
  65. 65.
    Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent Lc-MS/MS. J Proteome Res 10:1785–1793PubMedCrossRefGoogle Scholar
  66. 66.
    Huang EC, Henion JD (1990) LC/MS and LC/MS/MS determination of protein tryptic digests. J Am Soc Mass Spectrom 1:158–165PubMedCrossRefGoogle Scholar
  67. 67.
    Covey TR, Huang EC, Henion JD (1991) Structural characterization of protein tryptic peptides via liquid chromatography/mass spectrometry and collision-induced dissociation of their doubly charged molecular ions. Anal Chem 63:1193–1200PubMedCrossRefGoogle Scholar
  68. 68.
    Zubarev A (2013) The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics 13:723–726PubMedCrossRefGoogle Scholar
  69. 69.
    Hebert AS, Richards AL, Bailey DJ et al (2014) The one hour yeast proteome. Mol Cell Proteomics 13:339–347PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potentials, pitfalls and future directions. Nat Methods 9:555–566PubMedCrossRefGoogle Scholar
  71. 71.
    Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11, O111.016717. doi: 10.1074/mcp.O111.016717 PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Selevsek N, Chang CY, Gillet LC et al (2015) Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry. Mol Cell Proteomics 14:739–749PubMedCrossRefGoogle Scholar
  73. 73.
    Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112PubMedCrossRefGoogle Scholar
  74. 74.
    Wells JM, McLuckey SA (2005) Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 402:148–185PubMedCrossRefGoogle Scholar
  75. 75.
    Olsen JV, Macek B, Lange O et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712PubMedCrossRefGoogle Scholar
  76. 76.
    Syka JE, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Mikesh LM, Ueberheide B, Chi A et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Medzihradsky KF, Chalkley RJ (2015) Lessons in de novo peptide sequencing by tandem mass spectrometry. Mass Spectrom Rev 34:43–63CrossRefGoogle Scholar
  79. 79.
    Mann M, Wilm M (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66:4390–4399PubMedCrossRefGoogle Scholar
  80. 80.
    MacCoss MJ, Wu CC, Yates JR 3rd (2002) Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal Chem 74:5593–5599PubMedCrossRefGoogle Scholar
  81. 81.
    Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567PubMedCrossRefGoogle Scholar
  82. 82.
    Geer LY, Markey SP, Kowalak JA (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964PubMedCrossRefGoogle Scholar
  83. 83.
    Shilov IV, Seymour SL, Patel AA et al (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6:1638–1655PubMedCrossRefGoogle Scholar
  84. 84.
    Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805PubMedCrossRefGoogle Scholar
  85. 85.
    Beausoleil SA, Villén J, Gerber SA et al (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292PubMedCrossRefGoogle Scholar
  86. 86.
    Savitski MM, Lemeer S, Boesche M et al (2011) Confident phosphorylation site localization using the Mascot Delta Score. Mol Cell Proteomics 10, M110.003830. doi: 10.1074/mcp.M110.003830 PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Taus T, Köcher T, Pichler P et al (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10:5354–5362PubMedCrossRefGoogle Scholar
  88. 88.
    Jeong K, Kim S, Bandeira N (2012) False discovery rates in spectral identification. BMC Bioinformatics 13 Suppl 16:S2. doi:  10.1186/1471-2105-13-S16-S2 Google Scholar
  89. 89.
    Käll L, Canterbury JD, Weston J (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4:923–925PubMedCrossRefGoogle Scholar
  90. 90.
    Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031PubMedCrossRefGoogle Scholar
  91. 91.
    Lundgren DH, Hwang SI, Wu L et al (2010) Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 7:39–53PubMedCrossRefGoogle Scholar
  92. 92.
    Florens L, Carozza MJ, Swanson SK (2006) Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40:303–311PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Ishihama Y, Oda Y, Tabata T (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272PubMedCrossRefGoogle Scholar
  94. 94.
    Vogel C, Marcotte EM (2012) Label-free protein quantitation using weighted spectral counting. Methods Mol Biol 893:321–341PubMedCrossRefGoogle Scholar
  95. 95.
    Neilson KA, Ali NA, Muralidharan S et al (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553PubMedCrossRefGoogle Scholar
  96. 96.
    Wong JW, Cagney G (2010) An overview of label-free quantitation methods in proteomics by mass spectrometry. Methods Mol Biol 604:273–283PubMedCrossRefGoogle Scholar
  97. 97.
    Silva JC, Gorenstein MV, Li GZ et al (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156PubMedCrossRefGoogle Scholar
  98. 98.
    Schwanhäusser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342PubMedCrossRefGoogle Scholar
  99. 99.
    Smits AH, Jansen PW, Poser I et al (2013) Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Res 41, e28PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Gerber SA, Rush J, Stemman O et al (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100:6940–6945PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefGoogle Scholar
  102. 102.
    Liang HC, Lahert E, Pike I et al (2015) Quantitation of protein post-translational modifications using isobaric tandem mass tags. Bioanalysis 7:383–400PubMedCrossRefGoogle Scholar
  103. 103.
    Hsu JL, Huang SY, Chow NH et al (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852PubMedCrossRefGoogle Scholar
  104. 104.
    Smolka MB, Zhou H, Purkayastha S et al (2001) Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis. Anal Biochem 297:25–31PubMedCrossRefGoogle Scholar
  105. 105.
    Fenselau C, Yao X (2009) 18O2-labeling in quantitative proteomic strategies: a status report. J Proteome Res 8:2140–2143PubMedCrossRefGoogle Scholar
  106. 106.
    Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386PubMedCrossRefGoogle Scholar
  107. 107.
    Geiger T, Cox J, Ostasiewicz P et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7:383–385PubMedCrossRefGoogle Scholar
  108. 108.
    Krijgsveld J, Ketting RF, Mahmoudi T et al (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931PubMedCrossRefGoogle Scholar
  109. 109.
    Nesvizhskii A (2014) Proteogenomics: concepts, applications and computational strategies. Nat Methods 11:1114–1125PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Bioanalytical Mass SpectrometryMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Core Facility Proteomics, Institute of Clinical ChemistryUniversity Medical CenterGöttingenGermany
  3. 3.Clinic of Nephrology and RheumatologyUniversity Medical CenterGöttingenGermany

Personalised recommendations