Skip to main content

Reconstruction and Analysis of the Evolution of Modular Transcriptional Regulatory Programs Using Arboretum

  • Protocol
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1361))

Abstract

Comparative functional genomics aims to measure and compare genome-wide functional data such as transcriptomes, proteomes, and epigenomes across multiple species to study the conservation and divergence patterns of such quantitative measurements. However, computational methods to systematically compare these quantitative genomic profiles across multiple species are in their infancy. We developed Arboretum, a novel algorithm to identify modules of co-expressed genes and trace their evolutionary history across multiple species from a complex phylogeny. To interpret the results from Arboretum we developed several measures to examine the extent of conservation and divergence in modules and their relationship to species lifestyle, cis-regulatory elements, and gene duplication. We applied Arboretum to study the evolution of modular transcriptional regulatory programs controlling transcriptional response to different environmental stresses in the yeast Ascomycota phylogeny. We found that modules of similar patterns of expression captured the transcriptional responses to different stresses across species; however, the genes exhibiting these patterns were not the same. Divergence in module membership was associated with changes in lifestyle and specific clades and that gene duplication was a major factor contributing to the divergence of module membership.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jensen LJ, Jensen TS, de Lichtenberg U, Brunak S, Bork P (2006) Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature 443:594–597

    CAS  PubMed  Google Scholar 

  2. Gasch AP (2007) Comparative genomics of the environmental stress response in ascomycete fungi. Yeast (Chichester, England) 24:961–976

    Article  CAS  Google Scholar 

  3. Wohlbach DJ, Thompson DAA, Gasch AP, Regev A (2009) From elements to modules: regulatory evolution in Ascomycota fungi. Curr Opin Genet Dev 19:571–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Romero IG, Ruvinsky I, Gilad Y (2012) Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet 13:505–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Thompson DAA, Regev A (2009) Fungal regulatory evolution: cis and trans in the balance. FEBS Lett 583:3959–3965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Brawand D et al (2011) The evolution of gene expression levels in mammalian organs. Nature 478:343–348

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt D et al (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328:1036–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Xiao S et al (2012) Comparative epigenomic annotation of regulatory DNA. Mol Cell 149:1381–1392

    CAS  Google Scholar 

  9. Barbosa-Morais NL et al (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593

    Article  CAS  PubMed  Google Scholar 

  10. Merkin J, Russell C, Chen P, Burge CB (2012) Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:1593–1599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Tanay A, Regev A, Shamir R (2005) Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc Natl Acad Sci U S A 102:7203–7208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Waltman P et al (2010) Multi-species integrative biclustering. Genome Biol 11:R96+

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kuo D et al (2010) Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering. Genome Biol 11:R77

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hittinger CT, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–681

    Article  CAS  PubMed  Google Scholar 

  15. Thompson DA et al (2013) Evolutionary principles of modular gene regulation in yeasts. eLife 2, e00603. doi:10.7554/eLife.00603

    PubMed Central  PubMed  Google Scholar 

  16. Roy S et al (2013) Arboretum: reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules. Genome Res 23(6):1039–1050. doi:10.1101/gr.146233.112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. O’Brien KP, Remm M, Sonnhammer ELL (2005) Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res 33:D476–D480

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hastie T, Tibshirani R, Friedman JH (2003) The elements of statistical learning. Springer, New York

    Google Scholar 

  19. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Habib N, Wapinski I, Margalit H, Regev A, Friedman N (2012) A functional selection model explains evolutionary robustness despite plasticity in regulatory networks. Mol Syst Biol 8:619

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Automatic genome-wide reconstruction of phylogenetic gene trees. Bioinformatics 23:i549–i558

    Article  CAS  PubMed  Google Scholar 

  22. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed Central  PubMed  Google Scholar 

  23. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.R. is supported in part by a NSF ABI CAREER award (DBI-1350677). S.K. is supported by an NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM5T15LM007359). This work was also supported by NIH grant 2R01CA119176-01 and a SPARC grant from the Broad Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushmita Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Knaack, S.A., Thompson, D.A., Roy, S. (2016). Reconstruction and Analysis of the Evolution of Modular Transcriptional Regulatory Programs Using Arboretum. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 1361. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3079-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3079-1_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3078-4

  • Online ISBN: 978-1-4939-3079-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics