Systematic Determination of Transcription Factor DNA-Binding Specificities in Yeast

  • Lourdes Peña-Castillo
  • Gwenael Badis
Part of the Methods in Molecular Biology book series (MIMB, volume 1361)


Understanding how genes are regulated, decoding their “regulome”, is one of the main challenges of the post-genomic era. Here, we describe the in vitro method we used to associate cis-regulatory sites with cognate trans-regulators by characterizing the DNA-binding specificity of the vast majority of yeast transcription factors using Protein Binding Microarrays. This approach can be implemented to any given organism.

Key words

Transcription regulation Transcription factors DNA binding domain cis-regulatory element Enhancers Binding sites 



We thank Shaheynoor Talukder for standard operating procedure and Timothy R. Hughes for data availability. We also thank Esther T. Chan for useful comments. G.B. work was supported by the CIHR, the Institut Pasteur and the Centre National pour la Recherche Scientifique. LPC’s work was supported by a NSERC Discovery Grant and Memorial University of Newfoundland.


  1. 1.
    Ran B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309CrossRefGoogle Scholar
  2. 2.
    Iyer VR, Horak CE, Scafe CS et al (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538CrossRefPubMedGoogle Scholar
  3. 3.
    Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502Google Scholar
  4. 4.
    Wei C-L, Wu Q, Vega VB et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219CrossRefPubMedGoogle Scholar
  5. 5.
    Oliphant AR, Brandl CJ, Struhl K (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9:2944–2949PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Zykovich A, Korf I, Segal DJ (2009) Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res 37, e151Google Scholar
  7. 7.
    Jolma A, Kivioja T, Toivonen J et al (2010) Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 20:861–873PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Berger MF, Philippakis AA, Qureshi AM et al (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24:1429–1435PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Badis G, Chan ET, van Bakel H et al (2008) A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 32:878–887PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Gordân R, Murphy KF, McCord RP et al (2011) Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol 12:R125PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Zhu C, Byers KJRP, McCord RP et al (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19:556–566PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Berger MF, Badis G, Gehrke AR et al (2008) Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 133:1266–1276PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Badis G, Berger MF, Philippakis AA et al (2009) Diversity and complexity in DNA recognition by transcription factors. Science 324:1720–1723PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Busser BW, Huang D, Rogacki KR et al (2012) Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network. Proc Natl Acad Sci U S A 109:20768–20773PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Schultz J, Copley RR, Doerks T et al (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hughes TR, de Boer CG (2013) Mapping yeast transcriptional networks. Genetics 195:9–36PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    de Boer CG, Hughes TR (2011) YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Res 40:D169–D179PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Li MZ, Elledge SJ (2005) MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat Genet 37:311–319Google Scholar
  20. 20.
    Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Walhout AJ, Temple GF, Brasch MA et al (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328:575–592CrossRefPubMedGoogle Scholar
  22. 22.
    Dudley AM, Aach J, Steffen MA et al (2002) Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci 99:7554–7559PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Huber W, von Heydebreck A, Sueltmann H et al (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104CrossRefPubMedGoogle Scholar
  24. 24.
    Berger MF, Bulyk ML (2009) Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc 4:393–411PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Birmingham A, Selfors LM, Forster T et al (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6:569–575PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Anders S, McCarthy DJ, Chen Y et al (2013) Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nat Protoc 8:1765–1786CrossRefPubMedGoogle Scholar
  27. 27.
    Alleyne TM, Pena-Castillo L, Badis G et al (2009) Predicting the binding preference of transcription factors to individual DNA k-mers. Bioinformatics 25:1012–1018PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Christensen RG, Enuameh MS, Noyes MB et al (2012) Recognition models to predict DNA-binding specificities of homeodomain proteins. Bioinformatics 28:i84–i89PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Weirauch MT, Cote A, Norel R et al (2013) Evaluation of methods for modeling transcription factor sequence specificity. Nat Biotechnol 31:126–134PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Zhao Y, Stormo GD (2011) Quantitative analysis demonstrates most transcription factors require only simple models of specificity. Nat Biotechnol 29:480–483PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Cherry JM, Hong EL, Amundsen C et al (2012) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40:D700–D705PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Sandelin A, Alkema W, Engström P et al (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:D91–D94Google Scholar
  34. 34.
    Workman CT, Yin Y, Corcoran DL et al (2005) enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res 33:W389–W392PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiologyMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Department of Computer ScienceMemorial University of NewfoundlandSt. John’sCanada
  3. 3.Institut Pasteur, Génétique des Interactions MacromoléculairesCentre National de la Recherche ScientifiqueParisFrance

Personalised recommendations