ChIPseq in Yeast Species: From Chromatin Immunoprecipitation to High-Throughput Sequencing and Bioinformatics Data Analyses

  • Gaëlle Lelandais
  • Corinne Blugeon
  • Jawad Merhej
Part of the Methods in Molecular Biology book series (MIMB, volume 1361)


Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIPseq) is a powerful technique for the genome-wide location of protein DNA-binding sites. The ChIP experiment consists in treating living cells with a cross-linking agent to bind proteins to their DNA substrates. After fragmentation of DNA, specific fractions associated with a particular protein of interest are purified by immunoaffinity. They are next sequenced and identified on the reference genome using dedicated bioinformatics programs. Several technical aspects are important to obtain high-quality ChIPseq results. This includes the quality of antibodies, the sequencing protocols, the use of accurate controls and the careful choice of bioinformatics tools. We present here a general protocol to perform ChIPseq analyses in yeast species. This protocol has been optimized to identify target genes of specific transcription factors but can be used for any other DNA binding proteins.

Key words

Chromatin immunoprecipitation High-throughput sequencing DNA binding sites of proteins Yeasts Bioinformatics 


  1. 1.
    Harbison CT et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431(7004):99–104PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Lando D et al (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2(7):120078PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837CrossRefPubMedGoogle Scholar
  4. 4.
    Thurtle DM, Rine J (2014) The molecular topography of silenced chromatin in Saccharomyces cerevisiae. Genes Dev 28(3):245–258PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502CrossRefPubMedGoogle Scholar
  6. 6.
    Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Ho JW et al (2011) ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics 12:134PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38(6):1767–1771PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Li R et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967CrossRefPubMedGoogle Scholar
  10. 10.
    Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Chen Y et al (2013) CGAP-align: a high performance DNA short read alignment tool. PLoS One 8(4), e61033PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Schbath S et al (2012) Mapping reads on a genomic sequence: an algorithmic overview and a practical comparative analysis. J Comput Biol 19(6):796–813PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wilbanks EG, Facciotti MT (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One 5(7), e11471PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Malone BM, Tan F, Bridges SM, Peng Z (2011) Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data. PLoS One 6(9), e25260PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Bailey T et al (2013) Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol 9(11), e1003326PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Merhej J et al (2014) bPeaks: a bioinformatics tool to detect transcription factor binding sites from ChIPseq data in yeasts and other organisms with small genomes. Yeast 31(10):375–391CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang Y et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26(12):1351–1359PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Spyrou C, Stark R, Lynch AG, Tavare S (2009) BayesPeak: Bayesian analysis of ChIP-seq data. BMC Bioinformatics 10:299PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Landt SG et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Blankenberg D et al (2010) Manipulation of FASTQ data with Galaxy. Bioinformatics 26(14):1783–1785PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Li H et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Rozowsky J et al (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27(1):66–75PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Thomas-Chollier M et al (2012) RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res 40(4), e31PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institut Jacques Monod, CNRS UMR 7592University of Paris DiderotParisFrance
  2. 2.Plateforme Génomique, Ecole Normale SupérieureInstitut de Biologie de l’ENS, IBENSParisFrance
  3. 3.Inserm, U1024ParisFrance
  4. 4.CNRS, UMR 8197ParisFrance
  5. 5.Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne Universités, UPMC University of Paris 06, UMR 7238ParisFrance
  6. 6.Laboratoire de Biologie Computationnelle et QuantitativeCNRS, UMR 7238ParisFrance

Personalised recommendations