Advertisement

Introduction to Bioinformatics Resources for Post-transcriptional Regulation of Gene Expression

  • Alessandro Quattrone
  • Erik DassiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1358)

Abstract

Untranslated regions (UTRs) and, to a lesser extent, coding sequences of mRNAs are involved in defining the fate of the mature transcripts through the modulation of three primary control processes, mRNA localization, degradation and translation; the action of trans-factors such as RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) combined with the presence of defined sequence and structural cis-elements ultimately determines translation levels. Identifying functional regions in UTRs and uncovering post-transcriptional regulators acting upon these regions is thus of paramount importance to understand the spectrum of regulatory possibilities for any given mRNA. This tasks can now be approached computationally, to reduce the space of testable hypotheses and to drive experimental validation.

This chapter focuses on presenting databases and tools allowing to study the various aspects of post-transcriptional regulation, including motif search (sequence and secondary structure), prediction of regulatory networks (e.g., RBP and ncRNA binding sites), profiling of the mRNAs translational state, and other aspects of this level of gene expression regulation. Two analysis pipelines are also presented as practical examples of how the described tools could be integrated and effectively employed.

Key words

Bioinformatics UTR Database Prediction Data analysis Pipeline Omics Polysomal profiling RBP ncRNA Binding site Secondary structure Motif 

References

  1. 1.
    Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46CrossRefPubMedGoogle Scholar
  2. 2.
    Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205–213CrossRefPubMedGoogle Scholar
  3. 3.
    Milek M, Wyler E, Landthaler M (2012) Transcriptome-wide analysis of protein-RNA interactions using high-throughput sequencing. Semin Cell Dev Biol 23:206–212CrossRefPubMedGoogle Scholar
  4. 4.
    Arava Y (2003) Isolation of polysomal RNA for microarray analysis. Methods Mol Biol (Clifton, NJ) 224:79–87Google Scholar
  5. 5.
    Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215CrossRefPubMedGoogle Scholar
  6. 6.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Ray D, Kazan H, Chan ET, Pena Castillo L, Chaudhry S, Talukder S, Blencowe BJ, Morris Q, Hughes TR (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 27:667–670CrossRefPubMedGoogle Scholar
  10. 10.
    Lambert N, Robertson A, Jangi M, McGeary S, Sharp PA, Burge CB (2014) RNA Bind-n-Seq: quantitative assessment of the sequence and structural binding specificity of RNA binding proteins. Mol Cell 54:887–900PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Campbell ZT, Bhimsaria D, Valley CT, Rodriguez-Martinez JA, Menichelli E, Williamson JR, Ansari AZ, Wickens M (2012) Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. Cell Rep 1:570–581PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Larsson O, Sonenberg N, Nadon R (2011) anota: Analysis of differential translation in genome-wide studies. Bioinformatics (Oxford, England) 27:1440–1441CrossRefGoogle Scholar
  13. 13.
    Tebaldi T, Dassi E, Kostoska G, Viero G, Quattrone A (2014) tRanslatome: an R/Bioconductor package to portray translational control. Bioinformatics (Oxford, England) 30:289–291CrossRefGoogle Scholar
  14. 14.
    Olshen AB, Hsieh AC, Stumpf CR, Olshen RA, Ruggero D, Taylor BS (2013) Assessing gene-level translational control from ribosome profiling. Bioinformatics (Oxford, England) 29:2995–3002CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Xu B, Yang Y, Ban R, Zhang H, Jiang X, Cooke HJ, Xue Y, Shi Q (2012) CPSS: a computational platform for the analysis of small RNA deep sequencing data. Bioinformatics (Oxford, England) 28:1925–1927CrossRefGoogle Scholar
  16. 16.
    Giurato G, De Filippo MR, Rinaldi A, Hashim A, Nassa G, Ravo M, Rizzo F, Tarallo R, Weisz A (2013) iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq. BMC Bioinformatics 14:362PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics (Oxford, England) 28:2059–2061PubMedCentralCrossRefGoogle Scholar
  18. 18.
    Uren PJ, Bahrami-Samani E, Burns SC, Qiao M, Karginov FV, Hodges E, Hannon GJ, Sanford JR, Penalva LO, Smith AD (2012) Site identification in high-throughput RNA-protein interaction data. Bioinformatics (Oxford, England) 28:3013–3020CrossRefGoogle Scholar
  19. 19.
    Kucukural A, Ozadam H, Singh G, Moore MJ, Cenik C (2013) ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq. Bioinformatics (Oxford, England) 29:2485–2486CrossRefGoogle Scholar
  20. 20.
    Li Y, Zhao DY, Greenblatt JF, Zhang Z (2013) RIPSeeker: a statistical package for identifying protein-associated transcripts from RIP-seq experiments. Nucleic Acids Res 41, e94PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Chen B, Yun J, Kim MS, Mendell JT, Xie Y (2014) PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol 15:R18PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol/edited by Frederick M Ausubel [et al] Chapter 19, Unit 19 10:11–21Google Scholar
  23. 23.
    Travis AJ, Moody J, Helwak A, Tollervey D, Kudla G (2014) Hyb: a bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data. Methods 65:263–273PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Corcoran DL, Georgiev S, Mukherjee N, Gottwein E, Skalsky RL, Keene JD, Ohler U (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12:R79PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Sievers C, Schlumpf T, Sawarkar R, Comoglio F, Paro R (2012) Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res 40:e160PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Khorshid M, Rodak C, Zavolan M (2011) CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res 39:D245–D252PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A, Na H, Irimia M, Matzat LH, Dale RK, Smith SA, Yarosh CA, Kelly SM, Nabet B, Mecenas D, Li W, Laishram RS, Qiao M, Lipshitz HD, Piano F, Corbett AH, Carstens RP, Frey BJ, Anderson RA, Lynch KW, Penalva LO, Lei EP, Fraser AG, Blencowe BJ, Morris QD, Hughes TR (2013) A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–177PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Dassi E, Re A, Leo S, Tebaldi T, Pasini L, Peroni D, Quattrone A (2014) AURA 2: empowering discovery of post-transcriptional networks. Translation 2:e27738CrossRefGoogle Scholar
  29. 29.
    Anders G, Mackowiak SD, Jens M, Maaskola J, Kuntzagk A, Rajewsky N, Landthaler M, Dieterich C (2012) doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 40:D180–D186PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi S, Gennarino VA, Horner DS, Pavesi G, Picardi E, Pesole G (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38:D75–D80PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, Chu CF, Huang HY, Lin CM, Ho SY, Jian TY, Lin FM, Chang TH, Weng SL, Liao KW, Liao IE, Liu CC, Huang HD (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42:D78–D85PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Cho S, Jang I, Jun Y, Yoon S, Ko M, Kwon Y, Choi I, Chang H, Ryu D, Lee B, Kim VN, Kim W, Lee S (2013) MiRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res 41:D252–D257PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Kim KK, Ham J, Chi SW (2013) miRTCat: a comprehensive map of human and mouse microRNA target sites including non-canonical nucleation bulges. Bioinformatics (Oxford, England) 29:1898–1899CrossRefGoogle Scholar
  36. 36.
    Huang GT, Athanassiou C, Benos PV (2011) mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res 39:W416–W423PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39:D146–D151PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Bu D, Yu K, Sun S, Xie C, Skogerbo G, Miao R, Xiao H, Liao Q, Luo H, Zhao G, Zhao H, Liu Z, Liu C, Chen R, Zhao Y (2012) NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 40:D210–D215PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS (2009) NRED: a database of long noncoding RNA expression. Nucleic Acids Res 37:D122–D126PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Zhang X, Wu D, Chen L, Li X, Yang J, Fan D, Dong T, Liu M, Tan P, Xu J, Yi Y, Wang Y, Zou H, Hu Y, Fan K, Kang J, Huang Y, Miao Z, Bi M, Jin N, Li K, Li X, Xu J, Wang D (2014) RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction. RNA (New York, NY) 20:989–993CrossRefGoogle Scholar
  41. 41.
    Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:D226–D232PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Muller S, Rycak L, Afonso-Grunz F, Winter P, Zawada AM, Damrath E, Scheider J, Schmah J, Koch I, Kahl G, Rotter B (2014) APADB: a database for alternative polyadenylation and microRNA regulation events. Database 2014:bau076PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Bakheet T, Williams BR, Khabar KS (2006) ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res 34:D111–D114PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Gruber AR, Fallmann J, Kratochvill F, Kovarik P, Hofacker IL (2011) AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res 39:D66–D69PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Mokrejs M, Masek T, Vopalensky V, Hlubucek P, Delbos P, Pospisek M (2010) IRESite--a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res 38:D131–D136PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Castellano S, Gladyshev VN, Guigo R, Berry MJ (2008) SelenoDB 1.0: a database of selenoprotein genes, proteins and SECIS elements. Nucleic Acids Res 36:D332–D338PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Campillos M, Cases I, Hentze MW, Sanchez M (2010) SIREs: searching for iron-responsive elements. Nucleic Acids Res 38:W360–W367PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Jacobs GH, Chen A, Stevens SG, Stockwell PA, Black MA, Tate WP, Brown CM (2009) Transterm: a database to aid the analysis of regulatory sequences in mRNAs. Nucleic Acids Res 37:D72–D76PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG (2013) catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics (Oxford, England) 29:2928–2930CrossRefGoogle Scholar
  50. 50.
    Paz I, Kosti I, Ares M Jr, Cline M, Mandel-Gutfreund Y (2014) RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res 42:W361–W367PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Biswas A, Brown CM (2014) Scan for Motifs: a webserver for the analysis of post-transcriptional regulatory elements in the 3' untranslated regions (3' UTRs) of mRNAs. BMC Bioinformatics 15:174PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefPubMedGoogle Scholar
  53. 53.
    Vejnar CE, Blum M, Zdobnov EM (2013) miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Res 41:W165–W168PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41:W169–W173PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, Nieva de la Hidalga A, Balcazar Vargas MP, Sufi S, Goble C (2013) The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res 41:W557–W561PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Oulas A, Karathanasis N, Louloupi A, Iliopoulos I, Kalantidis K, Poirazi P (2012) A new microRNA target prediction tool identifies a novel interaction of a putative miRNA with CCND2. RNA Biol 9:1196–1207PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Coronnello C, Benos PV (2013) ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res 41:W159–W164PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C (2012) MAGIA(2): from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Res 40:W13–W21PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2:e363PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500CrossRefPubMedGoogle Scholar
  61. 61.
    Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284CrossRefPubMedGoogle Scholar
  62. 62.
    Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J (2013) The RNAsnp web server: predicting SNP effects on local RNA secondary structure. Nucleic Acids Res 41:W475–W479PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Halvorsen M, Martin JS, Broadaway S, Laederach A (2010) Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet 6:e1001074PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Yao Z, Weinberg Z, Ruzzo WL (2006) CMfinder--a covariance model based RNA motif finding algorithm. Bioinformatics (Oxford, England) 22:445–452CrossRefGoogle Scholar
  65. 65.
    Hiller M, Pudimat R, Busch A, Backofen R (2006) Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res 34:e117PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Rabani M, Kertesz M, Segal E (2008) Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes. Proc Natl Acad Sci U S A 105:14885–14890PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Goodarzi H, Najafabadi HS, Oikonomou P, Greco TM, Fish L, Salavati R, Cristea IM, Tavazoie S (2012) Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 485:264–268PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Kazan H, Morris Q (2013) RBPmotif: a web server for the discovery of sequence and structure preferences of RNA-binding proteins. Nucleic Acids Res 41:W180–W186PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Kazan H, Ray D, Chan ET, Hughes TR, Morris Q (2010) RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol 6:e1000832PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Cereda M, Pozzoli U, Rot G, Juvan P, Schweitzer A, Clark T, Ule J (2014) RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing. Genome Biol 15:R20PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Garber M, Grabherr MG, Guttman M, Trapnell C (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 8:469–477CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory of Translational Genomics, Centre for Integrative BiologyUniversity of TrentoMattarello, TrentoItaly

Personalised recommendations