Molecular Aspects of Conifer Zygotic and Somatic Embryo Development: A Review of Genome-Wide Approaches and Recent Insights

  • Jean-François TrontinEmail author
  • Krystyna Klimaszewska
  • Alexandre Morel
  • Catherine Hargreaves
  • Marie-Anne Lelu-Walter
Part of the Methods in Molecular Biology book series (MIMB, volume 1359)


Genome-wide profiling (transcriptomics, proteomics, metabolomics) is providing unprecedented opportunities to unravel the complexity of coordinated gene expression during embryo development in trees, especially conifer species harboring “giga-genome.” This knowledge should be critical for the efficient delivery of improved varieties through seeds and/or somatic embryos in fluctuating markets and to cope with climate change. We reviewed “omics” as well as targeted gene expression studies during both somatic and zygotic embryo development in conifers and tentatively puzzled over the critical processes and genes involved at the specific developmental and transition stages. Current limitations to the interpretation of these large datasets are going to be lifted through the ongoing development of comprehensive genome resources in conifers. Nevertheless omics already confirmed that master regulators (e.g., transcription and epigenetic factors) play central roles. As in model angiosperms, the molecular regulation from early to late embryogenesis may mainly arise from spatiotemporal modulation of auxin-, gibberellin-, and abscisic acid-mediated responses. Omics also showed the potential for the development of tools to assess the progress of embryo development or to build genotype-independent, predictive models of embryogenesis-specific characteristics.

Key words

Developmental regulator Embryo patterning Gymnosperm Metabolome Proteome Somatic embryogenesis Transcriptome Stress 



The preparation of this chapter was supported through various projects funded by (1) the French National Research Agency (GENOQB: ANR-05-GPLA-027, SUSTAINPINE: ANR-09-KBBE-007, XYLOFOREST: ANR-10-EQPX-16), (2) the European Community’s Seventh Framework Programme (FP7/2007-2013, Grant Agreement n° 289841-PROCOGEN), and (3) the French Regional Councils of “Région Centre” (EMBRYOME: 33639, IMTEMPERIES: 2014-00094511) and “Région Aquitaine” (EMBRYO2011: 09012579-045). K.K. was supported by Natural Resources Canada, Canadian Forest Service. Mrs. Isabelle Lamarre (NRCan, CFS) is thanked for English editing.


  1. 1.
    Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46:559–568PubMedCrossRefGoogle Scholar
  2. 2.
    Vestman D, Larsson E, Uddenberg D, Cairney J, Clapham D, Sundberg E, von Arnold S (2011) Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet Genomes 7:347–362CrossRefGoogle Scholar
  3. 3.
    Tang W, Newton RJ (2005) Genome-wide expression analysis of genes involved in somatic embryogenesis. In: Mujib A, Šamaj J (eds) Plant cell monographs, vol 2, Somatic embryogenesis. Springer, Berlin, pp 69–83Google Scholar
  4. 4.
    Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473PubMedCrossRefGoogle Scholar
  5. 5.
    Dowlatabadi R, Weljie AM, Thorpe TA, Yeung EC, Vogel HJ (2009) Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiol Biochem 47:343–350PubMedCrossRefGoogle Scholar
  6. 6.
    Robinson AR, Dauwe R, Ukrainetz NK, Cullis IF, White R, Mansfield SD (2009) Predicting the regenerative capacity of conifer somatic embryogenic cultures by metabolomics. Plant Biotechnol J 7:952–963PubMedCrossRefGoogle Scholar
  7. 7.
    Lippert D, Yuen M, Bohlmann J (2009) Spruce proteome DB: a resource for conifer proteomics research. Tree Genet Genomes 5:723–727CrossRefGoogle Scholar
  8. 8.
    Lorenz WW, Ayyampalayam S, Boedeaux JM, Howe GT, Jermstad KD, Neale DB, Rogers DL, Dean JFD (2012) Conifer DBMagic: a database housing multiple de novo transcriptome assemblies for 12 diverse conifer species. Tree Genet Genomes 8:1477–1485CrossRefGoogle Scholar
  9. 9.
    Raherison E, Rigault P, Caron S, Poulin P-L, Boyle B, Verta J-P, Giguère I, Bomal C, Bohlmann J, MacKay J (2012) Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression. BMC Genomics 13:434PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Canales J, Bautista R, Label P, Gómez-Maldonado J, Lesur I, Fernández-Pozo N, Rueda-López M, Guerrero-Fernández D, Castro-Rodríguez V, Benzekri H, Cañas RA, Guevara M-A, Rodrigues A, Seoane P, Teyssier C, Morel A, Ehrenmann F, Le Provost G, Lalanne C, Noirot C, Klopp C, Reymond I, García-Gutiérrez A, Trontin J-F, Lelu-Walter M-A, Miguel C, Cervera M-T, Cantón FR, Plomion C, Harvengt L, Avila C, Claros MG, Cánovas FM (2014) De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnol J 12:286–299PubMedCrossRefGoogle Scholar
  11. 11.
    Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Yuen MM, Keeling CI, Brand D, Vandervalk BP, Kirk H, Pandoh P, Moore RA, Zhao Y, Mungall AJ, Jaquish B, Yanchuk A, Ritland C, Boyle B, Bousquet J, Ritland K, Mackay I, Bohlmann J, Jones SJ (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu Z-Q, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Gil RG, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584PubMedCrossRefGoogle Scholar
  13. 13.
    Neale D, Wegrzyn J, Stevens K, Zimin A, Puiu D, Crepeau M, Cardeno C, Koriabine M, Holtz-Morris A, Liechty J, Martinez-Garcia P, Vasquez-Gross H, Lin B, Zieve J, Dougherty W, Fuentes-Soriano S, Wu L-S, Gilbert D, Marcais G, Roberts M, Holt C, Yandell M, Davis J, Smith K, Dean J, Lorenz W, Whetten R, Sederoff R, Wheeler N, McGuire P, Main D, Loopstra C, Mockaitis K, deJong P, Yorke J, Salzberg S, Langley C (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    MacKay J, Dean JFD, Plomion C, Peterson DG, Cánovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MA, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera M-T (2012) Towards decoding the conifer giga-genome. Plant Mol Biol 80:555–569PubMedCrossRefGoogle Scholar
  15. 15.
    Klimaszewska K, Trontin J-F, Becwar MR, Devillard C, Park Y-S, Lelu-Walter M-A (2007) Recent progress in somatic embryogenesis of four Pinus sp. Tree For Sci Biotech 1:11–25Google Scholar
  16. 16.
    Lelu-Walter M-A, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genome 9:883–899CrossRefGoogle Scholar
  17. 17.
    Palovaara J, Hallberg H, Stasolla C, Hakman I (2010) Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytol 188:122–135PubMedCrossRefGoogle Scholar
  18. 18.
    Yakovlev IA, Lee Y, Rotter B, Olsen JE, Skrøppa T, Johnsen Ø, Fossdal CG (2014) Temperature-dependent differential transcriptomes during formation of an epigenetic memory in Norway spruce embryogenesis. Tree Genet Genomes 10:355–366CrossRefGoogle Scholar
  19. 19.
    de Vega-Bartol JJ, Simões M, Lorenz WW, Rodrigues AS, Alba R, Dean JFD, Miguel C (2013) Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC Plant Biol 13:123PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Elhiti M, Stasolla C, Wang A (2013) Molecular regulation of plant somatic embryogenesis. In Vitro Cell Dev Biol Plant 49:631–642CrossRefGoogle Scholar
  21. 21.
    Rutledge RG, Stewart D, Caron S, Overton C, Boyle B, MacKay J, Klimaszewska K (2013) Potential link between biotic defense activation and recalcitrance to induction of somatic embryogenesis in shoot primordia from adult trees of white spruce (Picea glauca). BMC Plant Biol 13:116PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–121PubMedCrossRefGoogle Scholar
  23. 23.
    Stasolla C, Bozhkov PV, Chu T-M, Van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, von Arnold S, Sederoff RR (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24:1073–1085PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang Y, Zhang S, Han S, Li X, Qi L (2012) Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Rep 31:1637–1657PubMedCrossRefGoogle Scholar
  25. 25.
    Morel A, Teyssier C, Trontin J-F, Pešek B, Eliášová K, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu-Walter M-A (2014) Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analysis. Physiol Plant 152:184–201PubMedCrossRefGoogle Scholar
  26. 26.
    Cairney J, Xu N, MacKay J, Pullman J (2000) Transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell Dev Biol Plant 36:155–162CrossRefGoogle Scholar
  27. 27.
    Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758PubMedGoogle Scholar
  28. 28.
    Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536PubMedCrossRefGoogle Scholar
  29. 29.
    De Smet I, Lau S, Mayer U, Jürgen G (2010) Embryogenesis – the humble beginnings of plant life. Plant J 61:959–970PubMedCrossRefGoogle Scholar
  30. 30.
    Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X (2007) A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 90:620–628PubMedCrossRefGoogle Scholar
  32. 32.
    Cairney J, Zheng L, Cowels A, Hsiao J, Zismann V, Liu J, Ouyang S, Thibaud-Nissen F, Hamilton J, Childs K, Pullman GS, Zhang Y, Oh T, Buell CR (2006) Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Mol Biol 62:485–501PubMedCrossRefGoogle Scholar
  33. 33.
    Spencer MWB, Grene R, Lindsey K (2007) Transcriptional profiling of the Arabidopsis embryo. Plant Physiol 143:924–940PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Xiang D, Venglat P, Tibiche C, Yang H, Risseeuw E, Cao Y, Babic V, Cloutier M, Keller W, Wang E, Selvaraj G, Datla R (2011) Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol 156:346–356PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis – recent advances. Curr Sci 83:715–730Google Scholar
  36. 36.
    Rocha DI, Dornelas MC (2013) Molecular overview on plant somatic embryogenesis. CAB Rev 8, No. 022Google Scholar
  37. 37.
    Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565PubMedCrossRefGoogle Scholar
  38. 38.
    Li K, Zhu W, Zeng K, Zhang Z, Ye J, Ou W, Rehman S, Heuer B, Chen S (2010) Proteome characterization of cassava (Manihot esculenta Crantz) somatic embryos, plantlets and tuberous roots. Proteome Sci 8:10PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Dong JZ, Dunstan DI (2000) Molecular biology of somatic embryogenesis in conifers. Mol Biol Wood Plants For Sci 64:51–87CrossRefGoogle Scholar
  40. 40.
    von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova I (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org 69:233–249CrossRefGoogle Scholar
  41. 41.
    Stasolla C, Kong L, Yeung EC, Thorpe TA (2003) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105CrossRefGoogle Scholar
  42. 42.
    Bonga JM, Klimaszewska K, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss Org 100:241–254CrossRefGoogle Scholar
  43. 43.
    Morel A (2014) Molecular physiology of somatic embryo development in maritime pine (Pinus pinaster Ait.): transcriptomic and proteomic approaches. Ph.D. thesis, University of Orléans, France, 317 pp.Google Scholar
  44. 44.
    Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh EIS (2012) A gymnosperm homolog of somatic embryogenesis receptor-like kinase-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tiss Org 109:41–50CrossRefGoogle Scholar
  45. 45.
    Schlögl PS, Wendt dos Santos AL, Vieira L, Floh EIS, Guerra MP (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tiss Org 108:173–180CrossRefGoogle Scholar
  46. 46.
    Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Oi L (2010) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398:355–360PubMedCrossRefGoogle Scholar
  47. 47.
    Li W-F, Zhang S-G, Han S-Y, Wu T, Zhang J-H, Qi L-W (2013) Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell Tiss Org 113:131–136CrossRefGoogle Scholar
  48. 48.
    Li W-F, Zhang S-G, Han S-Y, Wu T, Zhang J-H, Qi L-W (2014) The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.) Carr. Tree Genet Genomes 10:223–229CrossRefGoogle Scholar
  49. 49.
    Zhang SG, Han SY, Yang WH, Wei HL, Zhang M, Qi LW (2010) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tiss Org 100:21–29CrossRefGoogle Scholar
  50. 50.
    Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L (2012) Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657PubMedCrossRefGoogle Scholar
  51. 51.
    Mathieu M, Lelu-Walter M-A, Blervacq AS, David H, Hawkins S, Neutelings G (2006) Germin-like genes are expressed during somatic embryogenesis and early development of conifers. Plant Mol Biol 61:615–627PubMedCrossRefGoogle Scholar
  52. 52.
    Guillaumot D, Lelu-Walter MA, Germot A, Meytraud F, Gastinel L, Riou-Khamlichi C (2008) Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix x marschlinsii). J Plant Physiol 165:1003–1010PubMedCrossRefGoogle Scholar
  53. 53.
    Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14:R339–R340PubMedCrossRefGoogle Scholar
  54. 54.
    Schwarzerová K, Vondráková Z, Fischer L, Bořiková P, Bellinvia E, Eliášová K, Havelková L, Fišerová J, Vágner M, Opatrný Z (2010) The role of actin isoforms in somatic embryogenesis in Norway spruce. BMC Plant Biol 10:89PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Belmonte MF, Tahir M, Schroeder D, Stasolla C (2007) Overexpression of HBK3, a class I KNOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. J Exp Bot 58:2851–2861PubMedCrossRefGoogle Scholar
  56. 56.
    Larsson E, Sitbon F, von Arnold S (2012) Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies). Plant Cell Rep 31:1053–1060PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Ciavatta VT, Egertsdotter U, Clapham D, von Arnold S, Cairney J (2002) A promoter from the loblolly pine PtNIP1;1 gene directs expression in an early-embryogenesis and suspensor-specific fashion. Planta 215:694–698PubMedCrossRefGoogle Scholar
  58. 58.
    Ingouff M, Farbos I, Lagercrantz U, von Arnold S (2001) PAHB1 is an evolutionary conserved HD-GL2 homeobox gene expressed in the protoderm during Norway spruce embryo development. Genesis 30:220–230PubMedCrossRefGoogle Scholar
  59. 59.
    Larsson E, Sundström JF, Sitbon F, von Arnold S (2012) Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Ann Bot 110:923–934PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Fischerova L, Fischer L, Vondráková Z, Vágner M (2008) Expression of the gene encoding transcription factor PaVP1 differs in Picea abies embryogenic lines depending on their ability to develop somatic embryos. Plant Cell Rep 27:435–441PubMedCrossRefGoogle Scholar
  61. 61.
    Uddenberg D, Valladares S, Abrahamsson M, Sundström JF, Sundås-Larsson A, von Arnold S (2011) Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234:527–539PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Hjortswang HI, Filonova LH, Vahala T, von Arnold S (2002) Modified expression of the Pa18 gene interferes with somatic embryo development in Norway spruce. Plant Growth Regul 38:75–82CrossRefGoogle Scholar
  63. 63.
    Wiweger M, Farbos I, Ingouff M, Lagercrantz U, von Arnold S (2003) Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. J Exp Bot 54:2691–2699PubMedCrossRefGoogle Scholar
  64. 64.
    Sabala I, Elfstrand M, Farbos I, Clapham D, von Arnold S (2000) Tissue-specific expression of Pa18, a putative lipid transfer protein gene, during embryo development in Norway spruce (Picea abies). Plant Mol Biol 42:461–478PubMedCrossRefGoogle Scholar
  65. 65.
    Ingouff M, Farbos I, Wiweger M, von Arnold S (2003) The molecular characterization of PaHB2, a homeobox gene of the HD-GL2 family expressed during embryo development in Norway spruce. J Exp Bot 54:1343–1350PubMedCrossRefGoogle Scholar
  66. 66.
    Hedman H, Zhu T, von Arnold S, Sohlberg JJ (2013) Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol 13:89PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Palovaara J, Hakman I (2008) Conifer WOX-related homeodomain transcription factors: developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. Plant Mol Biol 66:533–549PubMedCrossRefGoogle Scholar
  68. 68.
    Palovaara J, Hallberg H, Stasolla C, Luit B, Hakman I (2010) Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues. Tree Physiol 30:479–489PubMedCrossRefGoogle Scholar
  69. 69.
    Hakman I, Hallberg H, Palovaara J (2009) The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Tree Physiol 29:483–496PubMedCrossRefGoogle Scholar
  70. 70.
    Klimaszewska K, Overton C, Stewart D, Rutledge RG (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233:635–647PubMedCrossRefGoogle Scholar
  71. 71.
    Tahir M, Lawi DA, Stasolla C (2006) Molecular characterization of PgAGO, a novel conifer gene of the ARGONAUTE family expressed in apical cells and required for somatic embryo development in spruce. Tree Physiol 26:1257–1270PubMedCrossRefGoogle Scholar
  72. 72.
    Tahir M, Belmonte MF, Elhiti M, Flood H, Stasolla C (2008) Identification and characterization of PgHZ1, a novel homeodomain leucine-zipper gene isolated from white spruce (Picea glauca) tissue. Plant Physiol Biochem 46:1031–1039PubMedCrossRefGoogle Scholar
  73. 73.
    Zhao N, Boyle B, Duval I, Ferrer J-L, Lin H, Seguin A, Mackay J, Chen F (2009) SABATH methyltransferases from white spruce (Picea glauca): gene cloning, functional characterization and structural analysis. Tree Physiol 29:947–957PubMedCrossRefGoogle Scholar
  74. 74.
    Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J (2007) Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol 143:410–424PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge RG (2010) Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Rep 29:723–734PubMedCrossRefGoogle Scholar
  76. 76.
    Park SY, Klimaszewska K, Park JY, Mansfield SD (2010) Lodgepole pine: the first evidence of seed-based somatic embryogenesis and the expression of embryogenesis marker genes in shoot bud cultures of adult trees. Tree Physiol 30:1469–1478PubMedCrossRefGoogle Scholar
  77. 77.
    Lara-Chavez A, Egertsdotter U, Flinn BS (2012) Comparison of gene expression markers during zygotic and somatic embryogenesis in pine. In Vitro Cell Dev Biol Plant 48:341–354CrossRefGoogle Scholar
  78. 78.
    Pérez Rodríguez MJ, Fernanda Suárez M, Heredia R, Ávila C, Breton D, Trontin JF, Filonova L, Bozhkov P, von Arnold S, Harvengt L, Cánovas FM (2006) Expression patterns of two glutamine synthetase genes in zygotic and somatic pine embryos support specific roles in nitrogen metabolism during embryogenesis. New Phytol 169:35–44CrossRefGoogle Scholar
  79. 79.
    Alvarez JM, Cortizo M, Bueno N, Rodríguez A, Ordás RJ (2013) CLAVATA1-LIKE, a leucine-rich-repeat protein receptor kinase gene differentially expressed during adventitious caulogenesis in Pinus pinaster and Pinus pinea. Plant Cell Tiss Org 112:331–342CrossRefGoogle Scholar
  80. 80.
    Simões M, Rodrigues A, de Vega-Bartol J, Santos R, Miguel C (2011) Molecular characterization of pine embryogenesis: pursuing the role of a putative non-specific lipid-transfer protein. BMC Proc 5:P71PubMedCentralCrossRefGoogle Scholar
  81. 81.
    Gonçalves S, Cairney J, Rodríguez MP, Cánovas F, Oliveira M, Miguel C (2007) PpRab1, a Rab GTPase gene from maritime pine is differentially expressed during embryogenesis. Mol Genet Genomics 278:273–282PubMedCrossRefGoogle Scholar
  82. 82.
    Aquea F, Gutierrez F, Medina C, Arce-Johnson P (2008) A novel Otubain-like cysteine protease gene is preferentially expressed during somatic embryogenesis in Pinus radiata. Mol Biol Rep 35:567–573PubMedCrossRefGoogle Scholar
  83. 83.
    Hernández I, Carneros E, Pizatrro A, Abarca D, Díaz-Sala C (2011) Expression pattern of the GRAS gene family during somatic embryogenesis in pine. BMC Proc 5:P136PubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tiss Org 107:25–33CrossRefGoogle Scholar
  85. 85.
    Oh TJ, Wartell RM, Cairney J, Pullman GS (2008) Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179:67–80PubMedCrossRefGoogle Scholar
  86. 86.
    Vales T, Feng X, Ge L, Xu N, Cairney J, Clapham D, Sundberg E, von Arnold S (2007) Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26:133–143PubMedCrossRefGoogle Scholar
  87. 87.
    Ciavatta VT, Morillon R, Pullman GS, Chrispeels MJ, Cairney J (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine. Plant Physiol 127:1556–1567PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Jones B (2011) Identification, isolation, expression analysis and molecular characterization of nine genes key to late embryogenesis in loblolly pine. Ph.D. thesis, School of Biology, Georgia Institute of Technology, 173 pp.Google Scholar
  89. 89.
    Bishop-Hurley SL, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tiss Org 74:267–281CrossRefGoogle Scholar
  90. 90.
    van Zyl L, Bozhkov PV, Clapham DH, Sederoff RR, von Arnold S (2003) Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis. Gene Expr Patterns 3:83–91PubMedCrossRefGoogle Scholar
  91. 91.
    Elbl P, Lira BS, Andrade SCS, Jo L, dos Santos ALW, Coutinho LL, Floh EIS, Rossi M (2015) Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine, Araucaria angustifolia (Bertol.) Kuntze. Plant Cell Tiss Org 120:903–915Google Scholar
  92. 92.
    Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu W, Sederoff RR (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol 131:49–60PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Businge E, Bygdell J, Wingsle G, Moritz T, Egertsdotter U (2013) The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Physiol Plant 149:273–285PubMedCrossRefGoogle Scholar
  94. 94.
    Businge E, Brackmann K, Moritz T, Egertsdotter U (2012) Metabolite profiling reveals clear metabolic changes during somatic embryo development of Norway spruce (Picea abies). Tree Physiol 32:232–244PubMedCrossRefGoogle Scholar
  95. 95.
    Balbuena TS, Silveira V, Junqueira M, Dias LLC, Santa-Catarina C, Shevchenko A, Floh EIS (2009) Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia). J Proteomics 72:337–352PubMedCrossRefGoogle Scholar
  96. 96.
    Jo L, Dos Santos ALW, Bueno CA, Barbosa HR, Floh EIS (2014) Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential. Tree Physiol 34:94–104PubMedCrossRefGoogle Scholar
  97. 97.
    Silveira V, Santa-Catarina C, Balbuena TS, Moraes FMS, Ricart CAO, Souza MV, Guerra MP, Handro W, Floh EIS (2008) Endogenous abscisic acid levels and comparative proteome during seed development of Araucaria angustifolia (Bert.) O. Ktze. Biol Plant 52:101–104CrossRefGoogle Scholar
  98. 98.
    Balbuena TS, Jo L, Pieruzzi FP, Dias LLC, Silveira V, Santa-Catarina C, Junqueira M, Thelen JJ, Shevchenko A, Floh EIS (2011) Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia. Phytochemistry 72:302–311PubMedCrossRefGoogle Scholar
  99. 99.
    Shi J, Zhen Y, Zheng R-H (2010) Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook. J Exp Bot 61:2367–2381PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Sallandrouze A, Faurobert M, El Maataoui M, Espagnac H (1999) Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 20:1109–1119PubMedCrossRefGoogle Scholar
  101. 101.
    Teyssier C, Grondin C, Bonhomme L, Lomenech A-M, Vallance M, Morabito D, Label P, Lelu-Walter M-A (2011) Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix × eurolepsis): a 2-DE proteomic analysis. Physiol Plant 141:152–165PubMedCrossRefGoogle Scholar
  102. 102.
    Teyssier C, Maury S, Beaufour M, Grondin C, Delaunay A, Le Metté C, Ader K, Cadene M, Label P, Lelu-Walter MA (2014) In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): global DNA methylation and proteomic analyses. Physiol Plant 150:271–291PubMedCrossRefGoogle Scholar
  103. 103.
    Zhao J, Wang B, Wang X, Zhang Y, Dong M, Zhang J (2015) iTRAQ-based comparative proteomic analysis of embryogenic and non-embryogenic tissues of Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr). Plant Cell Tiss Org 120:655–669CrossRefGoogle Scholar
  104. 104.
    Zhen Y, Zhao Z-Z, Zheng R-H, Shi J (2012) Proteomic analysis of early seed development in Pinus massoniana L. Plant Physiol Biochem 54:97–104PubMedCrossRefGoogle Scholar
  105. 105.
    Morel A, Trontin J-F, Corbineau F, Lomenech A-M, Beaufour M, Reymond I, Le Metté C, Ader K, Harvengt L, Cadene M, Label P, Teyssier C, Lelu-Walter M-A (2014) Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses. Planta 240:1075–1095PubMedCrossRefGoogle Scholar
  106. 106.
    Yakovlev I, Fossdal CG, Johnsen O (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187:1154–1169PubMedCrossRefGoogle Scholar
  107. 107.
    Hazubska-Przybył T, Kalemba EM, Bojarczuk K (2013) Growth regulators and guaiacol peroxidase activity during the induction phase of somatic embryogenesis in Picea species. Dendrobiology 69:77–86CrossRefGoogle Scholar
  108. 108.
    Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411PubMedGoogle Scholar
  109. 109.
    Bozhkov PV, Filonova LH, von Arnold S (2002) A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnol Bioeng 77:658–667PubMedCrossRefGoogle Scholar
  110. 110.
    Smertenko A, Bozhkov P (2014) The life and death signalling underlying cell fate determination during somatic embryogenesis. In: Nick P, Opatrny Z (eds) Plant cell monographs, vol 22, Applied plant cell biology. Springer, Berlin, pp 131–178Google Scholar
  111. 111.
    Footitt S, Ingouff M, Clapham D, von Arnold S (2003) Expression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst). J Exp Bot 54:1711–1719PubMedCrossRefGoogle Scholar
  112. 112.
    Smertenko AP, Bozhkov PV, Filonova LH, von Arnold S, Hussey PJ (2003) Reorganisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant J 33:813–824PubMedCrossRefGoogle Scholar
  113. 113.
    Thomas SG, Huang S, Li S, Staiger CJ, Franklin-Tong VE (2006) Actin depolymerisation is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol 174:221–229PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Domon JM, Neutelings G, Roger D, David A, David H (2000) A basic chitinase-like protein secreted by embryogenic tissues of Pinus caribaea acts on arabinogalactan proteins extracted from the same cell lines. J Plant Physiol 156:33–39CrossRefGoogle Scholar
  115. 115.
    Larsson E, Sitbon F, Ljung K, von Arnold S (2008) Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytol 177:356–366PubMedGoogle Scholar
  116. 116.
    Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tiss Org 109:391–400CrossRefGoogle Scholar
  117. 117.
    Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944PubMedCrossRefGoogle Scholar
  118. 118.
    Palovaara J, Hakman I (2009) WOX2 and polar auxin transport during spruce embryo axis formation. Plant Signal Behav 4:153–155PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Kagaya Y, Okuda R, Ban A, Toyoshima R, Tsutsumida K, Usui H, Yamamoto A, Hattori T (2005) Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis. Plant Cell Physiol 46:300–311PubMedCrossRefGoogle Scholar
  120. 120.
    Tsai AYL (2013) Post-translational regulations of FUSCA3 in Arabidopsis thaliana. Ph.D. thesis, Graduate Department of Cell and Systems Biology, University of Toronto, 245 pp.Google Scholar
  121. 121.
    Lynch T, Erickson BJ, Finkelstein RR (2012) Direct interactions of ABA-insensitive (ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Mol Biol 80:647–658PubMedCrossRefGoogle Scholar
  122. 122.
    Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10:2–11PubMedCrossRefGoogle Scholar
  123. 123.
    Brownfield D, Todd C, Stone S, Deyholos M, Gifford D (2007) Patterns of storage protein and triacylglycerol accumulation during loblolly pine somatic embryo maturation. Plant Cell Tiss Org 88:217–223CrossRefGoogle Scholar
  124. 124.
    Belmonte MF, Donald G, Reid DM, Yeung EC, Stasolla C (2005) Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca). J Exp Bot 56:2355–2364PubMedCrossRefGoogle Scholar
  125. 125.
    Stasolla C, Yeung EC (2001) Ascorbic acid metabolism during white spruce somatic embryo maturation and germination. Physiol Plant 111:196–205CrossRefGoogle Scholar
  126. 126.
    Vanderschuren H, Lentz E, Zainuddin I, Gruissem W (2013) Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J Proteomics 93:5–19PubMedCrossRefGoogle Scholar
  127. 127.
    Bindschedler LV, Cramer R (2011) Quantitative plant proteomics. Proteomics 11:756–775PubMedCrossRefGoogle Scholar
  128. 128.
    Klimaszewska K, Morency F, Jones-Overton C, Cookeb J (2004) Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol Plant 121:682–690CrossRefGoogle Scholar
  129. 129.
    Hakman I, Stabel P, Engström P, Eriksson T (1990) Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce). Physiol Plant 80:441–445CrossRefGoogle Scholar
  130. 130.
    Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Mithran M, Paparelli E, Novi G, Perata P, Loreti E (2014) Analysis of the role of the pyruvate decarboxylase gene family in Arabidopsis thaliana under low-oxygen conditions. Plant Biol 16:28–34PubMedCrossRefGoogle Scholar
  132. 132.
    Dauwe R, Holliday JA, Aitken SN, Mansfield SD (2012) Metabolic dynamics during autumn cold acclimation within and among populations of Sitka spruce (Picea sitchensis). New Phytol 194:192–205PubMedCrossRefGoogle Scholar
  133. 133.
    Saghatelian A, Cravatt BF (2005) Global strategies to integrate the proteome and metabolome. Curr Opin Chem Biol 9:62–68PubMedCrossRefGoogle Scholar
  134. 134.
    Breton D, Harvengt L, Trontin J-F, Bouvet A, Favre J-M (2005) High subculture frequency, maltose-based and hormone-free medium sustained early development of somatic embryos in maritime pine. In Vitro Cell Dev Biol Plant 41:494–504CrossRefGoogle Scholar
  135. 135.
    Abril N, Gion J-M, Kerner R, Müller-Starck G, Cerrillo RMN, Plomion C, Renaut J, Valledor L, Jorrin-Novo JV (2011) Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry 72:1219–1242PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jean-François Trontin
    • 1
    Email author
  • Krystyna Klimaszewska
    • 2
  • Alexandre Morel
    • 4
  • Catherine Hargreaves
    • 3
  • Marie-Anne Lelu-Walter
    • 4
  1. 1.FCBA, Pôle Biotechnologie et Sylviculture AvancéeCestasFrance
  2. 2.Natural Resources Canada, Canadian Forest ServiceLaurentian Forestry CentreStn. Sainte-FoyCanada
  3. 3.ScionRotoruaNew Zealand
  4. 4.INRA, UR 0588 Unité AméliorationGénétique et Physiologie ForestièresArdon, Orléans Cedex 2France

Personalised recommendations