Somatic Embryogenesis in Peach-Palm (Bactris gasipaes) Using Different Explant Sources

  • Douglas A. SteinmacherEmail author
  • Angelo Schuabb Heringer
  • Víctor M. Jiménez
  • Marguerite G. G. Quoirin
  • Miguel P. Guerra
Part of the Methods in Molecular Biology book series (MIMB, volume 1359)


Peach palm (Bactris gasipaes Kunth) is a member of the family Arecaceae and is a multipurpose but underutilized species. Nowadays, fruit production for subsistence and local markets, and heart-of-palm production for local, national, and international markets are the most important uses of this plant. Conventional breeding programs in peach palm are long-term efforts due to the prolonged generation time, large plant size, difficulties with controlled pollination and other factors. Although it is a caespitose palm, its propagation is currently based on seeds, as off-shoots are difficult to root. Hence, tissue culture techniques are considered to be the most likely strategy for efficient clonal plantlet regeneration of this species. Among various techniques, somatic embryogenesis offers the advantages of potential automated large-scale production and putative genetic stability of the regenerated plantlets. The induction of somatic embryogenesis in peach palm can be achieved by using different explant sources including zygotic embryos, immature inflorescences and thin cell layers from the young leaves and shoot meristems. The choice of a particular explant depends on whether clonal propagation is desired or not, as well as on the plant conditions and availability of explants. Protocols to induce and express somatic embryogenesis from different peach palm explants, up to acclimatization of plantlets, are described in this chapter.

Key words

Clonal propagation Conservation programs Heart-of-palm Large-scale production Pejibaye palm Somatic embryo 



The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Ministry of Education (Brasília, Brazil), the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Brasília, Brazil), Fundação Araucária, (Curitiba, PR, Brazil), Parque Tecnológico da Itaipu-PTI (Foz do Iguaçu, PR, Brazil), and Consejo Nacional para Investigaciones Científicas y Tecnológicas (San José, Costa Rica), for their support.


  1. 1.
    Mora-Urpí J, Weber JC, Clement CR (1997) Peach palm (Bactris gasipaes Kunth). Institute of Plant Genetics and Crop Plant Research and International Plant Genetic Resources Institute, RomeGoogle Scholar
  2. 2.
    Clement CR, Mora-Urpí JE (1987) Pejibaye palm (Bactris gasipaes, Arecaceae): multi-use potential for the lowland humid tropics. Econ Bot 41:302–311CrossRefGoogle Scholar
  3. 3.
    Clement CR (2008) Peach palm (Bactris gasipaes). In: Janick J, Paull RE (eds) The encyclopedia of fruit and nuts. CABI, Wallingford, UK, pp 93–101Google Scholar
  4. 4.
    Steinmacher DA, Clement CR, Guerra MP (2007) Somatic embryogenesis from immature peach palm inflorescence explants: towards development of an efficient protocol. Plant Cell Tissue Organ Cult 89:15–22CrossRefGoogle Scholar
  5. 5.
    Heringer AS, Steinmacher DA, Fraga HPF, Vieira LN, Ree JF, Guerra MP (2013) Global DNA methylation profiles of somatic embryos of peach palm (Bactris gasipaes Kunth) are influenced by cryoprotectants and droplet-vitrification cryopreservation. Plant Cell Tissue Organ Cult 114:365–372CrossRefGoogle Scholar
  6. 6.
    Perez-Nunez MT, Chan JL, Saenz L, Gonzalez T, Verdeil JL, Oropeza C (2006) Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell Dev Biol Plant 42:37–43CrossRefGoogle Scholar
  7. 7.
    Guerra MP, Torres AC, Teixeira JB (1999) Embriogênese somática e sementes sintéticas. In: Torres AC, Caldas LS, Buso JA (eds) Cultura de tecidos e transformação genética de plantas. SPI/EMBRAPA, Brasilia, Brazil, pp 533–568Google Scholar
  8. 8.
    Sluis CJ (2006) Integrating automation technologies with commercial micropropagation. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering. Springer, The Netherlands, pp 231–251Google Scholar
  9. 9.
    Steinmacher DA, Krohn NG, Dantas ACM, Stefenon VM, Clement CR, Guerra MP (2007) Somatic embryogenesis in peach palm using the thin cell layer technique: induction, morpho-histological aspects and AFLP analysis of somaclonal variation. Ann Bot 100:699–709PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Verdeil JL, Huet C, Grosdemange F, Buffard-Morel J (1994) Plant regeneration from cultured immature inflorescences of coconut (Cocos nucifera L)—evidence for somatic embryogenesis. Plant Cell Rep 13:218–221PubMedGoogle Scholar
  11. 11.
    Almeida M, Almeida CV (2006) Somatic embryogenesis and in vitro plant regeneration from pejibaye adult plant leaf primordial. Pesq Agrop Brasileira 41:1449–1452CrossRefGoogle Scholar
  12. 12.
    Steinmacher DA, Cangahuala-Inocente GC, Clement CR, Guerra MP (2007) Somatic embryogenesis from peach palm zygotic embryos. In Vitro Cell Dev Biol Plant 43:124–132CrossRefGoogle Scholar
  13. 13.
    Maciel SA, Fermino Junior PCP, da Silva RA, Scherwinski-Pereira JE (2010) Morpho-anatomical characterization of embryogenic calluses from immature zygotic embryo of peach palm during somatic embryogenesis. Acta Sci Agron 32:263–267Google Scholar
  14. 14.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  15. 15.
    Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143CrossRefGoogle Scholar
  16. 16.
    Clement CR (1987) Preliminary observation on the developmental curve of pejibaye (Bactris gasipaes H.B.K.) inflorescences. Rev Biol Trop 35(1):151–153Google Scholar
  17. 17.
    Steinmacher DA, Guerra MP, Saare-Surminski S, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108(8):1463–1475PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Douglas A. Steinmacher
    • 1
    • 2
    Email author
  • Angelo Schuabb Heringer
    • 3
  • Víctor M. Jiménez
    • 4
  • Marguerite G. G. Quoirin
    • 1
  • Miguel P. Guerra
    • 5
  1. 1.Programa de Pós-Graduação em AgronomiaUFPRCuritibaBrazil
  2. 2.Vivetech AgrociênciasMarechal Candido RondonBrazil
  3. 3.UENF, Universidade Estadual do Norte Fluminense Darcy RibeiroCampos dos GoytacazesBrazil
  4. 4.CIGRASUniversidad de Costa RicaSan PedroCosta Rica
  5. 5.Graduate Program in Plant Genetic Resources, Plant Developmental Physiology and Genetics LaboratoryFederal University of Santa Catarina (UFSC)FlorianópolisBrazil

Personalised recommendations