How to Use the Candida Genome Database

  • Marek S. Skrzypek
  • Jonathan Binkley
  • Gavin Sherlock
Part of the Methods in Molecular Biology book series (MIMB, volume 1356)

Abstract

Studying Candida biology requires access to genomic sequence data in conjunction with experimental information that provides functional context to genes and proteins. The Candida Genome Database (CGD) integrates functional information about Candida genes and their products with a set of analysis tools that facilitate searching for sets of genes and exploring their biological roles. This chapter describes how the various types of information available at CGD can be searched, retrieved, and analyzed. Starting with the guided tour of the CGD Home page and Locus Summary page, this unit shows how to navigate the various assemblies of the C. albicans genome, how to use Gene Ontology tools to make sense of large-scale data, and how to access the microarray data archived at CGD.

Key words

Candida Genome database Expression analysis Gene ontology GO slim 

Notes

Acknowledgements

This work was supported by National Institute of Dental and Craniofacial Research at the US National Institutes of Health (grant no. R01 DE015873).

References

  1. 1.
    Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101:7329–7334PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Fitzpatrick DA, O'Gaora P, Byrne KP, Butler G (2010) Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics 11:290PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Inglis DO, Arnaud MB, Binkley J, Shah P, Skrzypek MS, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G (2012) The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. Nucleic Acids Res 40:D667–D674PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, Fisk DG, Hirschman JE, Hitz BC, Hong EL, Krieger CJ, Livstone MS, Miyasato SR, Nash R, Oughtred R, Park J, Skrzypek MS, Weng S, Wong ED, Dolinski K, Botstein D, Cherry JM (2010) Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res 38:D433–D436PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Muller HM, Kenny EE, Sternberg PW (2004) Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biol 2:e309PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Stein LD (2013) Using GBrowse 2.0 to visualize and share next-generation sequence data. Brief Bioinform 14:162–171PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    van het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, Hogues H, Cuomo C, Berriman M, Scherer S, Magee BB, Whiteway M, Chibana H, Nantel A, Magee PT (2007) Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol 8:R52CrossRefGoogle Scholar
  9. 9.
    Muzzey D, Schwartz K, Weissman JS, Sherlock G (2013) Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol 14:R97PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO::TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20:3710–3715PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Rees CA, Demeter J, Matese JC, Botstein D, Sherlock G (2004) GeneXplorer: an interactive web application for microarray data visualization and analysis. BMC Bioinformatics 5:141PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Maguire SL, OhEigeartaigh SS, Byrne KP, Schroder MS, O’Gaora P, Wolfe KH, Butler G (2013) Comparative genome analysis and gene finding in Candida species using CGOB. Mol Biol Evol 30:1281–1291PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, Frings O, Sonnhammer EL (2010) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38:D196–D203PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marek S. Skrzypek
    • 1
  • Jonathan Binkley
    • 1
  • Gavin Sherlock
    • 1
  1. 1.Department of GeneticsStanford University Medical SchoolStanfordUSA

Personalised recommendations