Phosphopeptide Detection with Biotin-Labeled Phos-tag

  • Emiko Kinoshita-Kikuta
  • Eiji KinoshitaEmail author
  • Tohru Koike
Part of the Methods in Molecular Biology book series (MIMB, volume 1355)


Protein kinases are widely considered to be invaluable target enzymes for drug discovery and for diagnosing diseases and assessing their prognosis. Effective analytical techniques for measuring the activities of cellular protein kinases are therefore required for studies in the field of phosphoproteomics. We have recently developed a highly sensitive microarray-based technique for tracing the activities of protein kinases. A series of peptides that are specific substrates of various protein kinases are immobilized on a glass slide and subjected to phosphorylation by cell lysates. The resulting phosphorylated forms of the various peptides are then selectively and simultaneously detected by using a phosphate-binding tag molecule, biotin-labeled Phos-tag, bound to horseradish peroxidase-conjugated streptavidin. Enhanced chemiluminescence signals can then be readily detected by using an automatic image analyzer. In this chapter, we describe a standard protocol for detecting phosphopeptides by biotin-labeled Phos-tag. We also describe a microarray system for high-throughput profiling of intracellular protein kinase activities. The Phos-tag-based method is expected to be useful in the rapid detection of the complex range of phosphorylation reactions involved in cellular signaling events, and it has potential applications in high-throughput screening of kinase activators or inhibitors.

Key words

Phos-tag Biotin Protein kinase Peptide Microarray Phosphorylation High-throughput profiling Enhanced chemiluminescence 



This work was supported in part by KAKENHI Grants (24590050, 25293005, 25560417, 25117718, and 26460036) and by a research grant from the Takeda Science Foundation.


  1. 1.
    Hunter T (2000) Signaling: 2000 and beyond. Cell 100:113–127CrossRefPubMedGoogle Scholar
  2. 2.
    Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648CrossRefPubMedGoogle Scholar
  3. 3.
    Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541CrossRefPubMedGoogle Scholar
  4. 4.
    Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934CrossRefPubMedGoogle Scholar
  5. 5.
    Brognard J, Hunter T (2011) Protein kinase signaling networks in cancer. Curr Opin Genet Dev 21:4–11PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Patterson H, Nibbs R, McInnes I et al (2014) Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin Exp Immunol 176:1–10PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 58:458–471CrossRefPubMedGoogle Scholar
  8. 8.
    Ishida A, Kameshita I, Sueyoshi N et al (2007) Recent advances in technologies for analyzing protein kinases. J Pharmacol Sci 103:5–11CrossRefPubMedGoogle Scholar
  9. 9.
    Kosako H, Nagano K (2011) Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics 8:81–94CrossRefPubMedGoogle Scholar
  10. 10.
    Schutkowski M, Reineke U, Reimer U (2005) Peptide arrays for kinase profiling. ChemBioChem 6:513–521CrossRefPubMedGoogle Scholar
  11. 11.
    Arsenault R, Griebel P, Napper S (2011) Peptide arrays for kinome analysis: new opportunities and remaining challenges. Proteomics 11:4595–4609CrossRefPubMedGoogle Scholar
  12. 12.
    Yamamoto T, Mori T, Katayama Y (2014) Microarray technologies for intracellular kinome analysis. Curr Med Chem 21:2542–2552 doi: 10.2174/0929867321666131212154153
  13. 13.
    Kinoshita E, Takahashi M, Takeda H et al (2004) Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans 1189–1193Google Scholar
  14. 14.
    Kinoshita E, Yamada A, Takeda H et al (2005) Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. J Sep Sci 28:155–162CrossRefPubMedGoogle Scholar
  15. 15.
    Kinoshita-Kikuta E, Kinoshita E, Yamada A et al (2006) Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics 6:5088–5095CrossRefPubMedGoogle Scholar
  16. 16.
    Kinoshita-Kikuta E, Kinoshita E, Koike T (2009) Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysates. Anal Biochem 389:83–85CrossRefPubMedGoogle Scholar
  17. 17.
    Kinoshita-Kikuta E, Yamada A, Inoue C et al (2010) A novel phosphate-affinity bead with immobilized Phos-tag for separation and enrichment of phosphopeptides and phosphoproteins. J Integr OMICS 1:157–169Google Scholar
  18. 18.
    Tsunehiro M, Meki Y, Matsuoka K et al (2013) A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules. J Chromatogr B Anal Technol Biomed Life Sci 925:86–94CrossRefGoogle Scholar
  19. 19.
    Kinoshita-Kikuta E, Aoki Y, Kinoshita E et al (2007) Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol Cell Proteomics 6:356–366CrossRefPubMedGoogle Scholar
  20. 20.
    Kinoshita E, Kinoshita-Kikuta E, Matsubara M et al (2008) Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8:2994–3003CrossRefPubMedGoogle Scholar
  21. 21.
    Kinoshita E, Kinoshita-Kikuta E, Matsubara M et al (2009) Two-dimensional phosphate-affinity gel electrophoresis for the analysis of phosphoprotein isotypes. Electrophoresis 30:550–559CrossRefPubMedGoogle Scholar
  22. 22.
    Kinoshita E, Kinoshita-Kikuta E, Ujihara H et al (2009) Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose. Proteomics 9:4098–4101CrossRefPubMedGoogle Scholar
  23. 23.
    Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4:1513–1521CrossRefPubMedGoogle Scholar
  24. 24.
    Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11:319–323CrossRefPubMedGoogle Scholar
  25. 25.
    Kinoshita E, Kinoshita-Kikuta E, Koike T (2012) Phos-tag SDS-PAGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions. Proteomics 12:192–202CrossRefPubMedGoogle Scholar
  26. 26.
    Kinoshita-Kikuta E, Kinoshita E, Koike T (2012) Separation and identification of four distinct serine-phosphorylation states of ovalbumin by Phos-tag affinity electrophoresis. Electrophoresis 33:849–855CrossRefPubMedGoogle Scholar
  27. 27.
    Kinoshita-Kikuta E, Kinoshita E, Koike T (2012) A laborsaving, timesaving, and more reliable strategy for separation of low-molecular-mass phosphoproteins in Phos-tag affinity electrophoresis. Int J Chem (Mumbai, India) 4(5):1–8Google Scholar
  28. 28.
    Kinoshita E, Kinoshita-Kikuta E, Shiba A et al (2014) Profiling of protein thiophosphorylation by Phos-tag affinity electrophoresis: evaluation of adenosine 5′-O-(3-thiotriphosphate) as a phosphoryl donor in protein kinase reactions. Proteomics 14:668–679CrossRefPubMedGoogle Scholar
  29. 29.
    Kinoshita E, Kinoshita-Kikuta E, Takiyama K et al (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757CrossRefPubMedGoogle Scholar
  30. 30.
    Inamori K, Kyo M, Nishiya Y et al (2005) Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule. Anal Chem 77:3979–3985CrossRefPubMedGoogle Scholar
  31. 31.
    Nakanishi T, Ando E, Furuta M et al (2007) Identification on membrane and characterization of phosphoproteins using an alkoxide-bridged dinuclear metal complex as a phosphate binding tag molecule. J Biomol Tech 18:278–286PubMedCentralPubMedGoogle Scholar
  32. 32.
    Kinoshita E, Kinoshita-Kikuta E, Sugiyama Y et al (2012) Highly sensitive detection of protein phosphorylation by using improved Phos-tag Biotin. Proteomics 12:932–937CrossRefPubMedGoogle Scholar
  33. 33.
    Kinoshita E, Kinoshita-Kikuta E, Koike T (2013) Highly sensitive detection method for protein phosphorylation and its development as a new technique toward phosphoproteomics. Seikagaku 85:447–455 (in Japanese)PubMedGoogle Scholar
  34. 34.
    Kinoshita E, Kinoshita-Kikuta E, Koike T (2013) Phos-tag-based microarray techniques advance phosphoproteomics. J Proteomics Bioinf S6:008Google Scholar
  35. 35.
    Kinoshita E, Kinoshita-Kikuta E, Koike T (2013) Sandwich assay for phosphorylation of protein multiplexes by using antibodies and Phos-tag. Anal Biochem 438:104–106CrossRefPubMedGoogle Scholar
  36. 36.
    Han X, Sonoda T, Mori T et al (2010) Protein kinase substrate profiling with a high-density peptide microarray. Comb Chem High Throughput Screen 13:777–789CrossRefPubMedGoogle Scholar
  37. 37.
    Han X, Katayama Y (2010) A peptide microarray for detecting protein kinase activity in cell lysates. Methods Mol Biol 669:183–194CrossRefPubMedGoogle Scholar
  38. 38.
    Ikeda H, Kamimoto J, Yamamoto T et al (2013) A peptide microarray fabricated on a non-fouling phosphatidylcholine-polymer-coated surface for a high-fidelity analysis of a cellular kinome. Curr Med Chem 20:4419–4425CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Emiko Kinoshita-Kikuta
    • 1
  • Eiji Kinoshita
    • 1
    Email author
  • Tohru Koike
    • 1
  1. 1.Department of Functional Molecular Science, Institute of Biomedical & Health SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations