Skip to main content

Analysis of HIV-1 Gag-RNA Interactions in Cells and Virions by CLIP-seq

  • Protocol
Book cover HIV Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1354))

Abstract

Next-generation sequencing-based methodologies have revolutionized the analysis of protein-nucleic acid complexes; yet these novel approaches have rarely been applied in virology. Because it has an RNA genome, RNA-protein interactions play critical roles in human immunodeficiency virus type 1 (HIV-1) replication. In many cases, the binding sites of proteins on HIV-1 RNA molecules in physiologically relevant settings are not known. Cross-linking-immunoprecipitation sequencing (CLIP-seq) methodologies, which combine immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, is a powerful technique that can be applied to such questions as it provides a global account of RNA sequences bound by a RNA-binding protein of interest in physiological settings at near-nucleotide resolution. Here, we describe the application of the CLIP-seq methodology to identify the RNA molecules that are bound by the HIV-1 Gag protein in cells and in virions. This protocol can easily be applied to other viral and cellular RNA-binding proteins that influence HIV-1 replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuzembayeva M, Dilley K, Sardo L et al (2014) Life of psi: how full-length HIV-1 RNAs become packaged genomes in the viral particles. Virology 454–455:362–370

    Article  PubMed  Google Scholar 

  2. Lu K, Heng X, Summers MF (2011) Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 410:609–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rein A, Datta SA, Jones CP et al (2011) Diverse interactions of retroviral Gag proteins with RNAs. Trends Biochem Sci 36:373–380

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Aldovini A, Young RA (1990) Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64:1920–1926

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Clavel F, Orenstein JM (1990) A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology. J Virol 64:5230–5234

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lever A, Gottlinger H, Haseltine W et al (1989) Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol 63:4085–4087

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Luban J, Goff SP (1994) Mutational analysis of cis-acting packaging signals in human immunodeficiency virus type 1 RNA. J Virol 68:3784–3793

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clever JL, Parslow TG (1997) Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. J Virol 71:3407–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Laham-Karam N, Bacharach E (2007) Transduction of human immunodeficiency virus type 1 vectors lacking encapsidation and dimerization signals. J Virol 81:10687–10698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McBride MS, Schwartz MD, Panganiban AT (1997) Efficient encapsidation of human immunodeficiency virus type 1 vectors and further characterization of cis elements required for encapsidation. J Virol 71:4544–4554

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jouvenet N, Simon SM, Bieniasz PD (2009) Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc Natl Acad Sci U S A 106:19114–19119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kutluay SB, Bieniasz PD (2010) Analysis of the initiating events in HIV-1 particle assembly and genome packaging. PLoS Pathog 6, e1001200

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rulli SJ Jr, Hibbert CS, Mirro J et al (2007) Selective and nonselective packaging of cellular RNAs in retrovirus particles. J Virol 81:6623–6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muriaux D, Mirro J, Harvin D et al (2001) RNA is a structural element in retrovirus particles. Proc Natl Acad Sci U S A 98:5246–5251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kutluay SB, Zang T, Blanco-Melo D et al (2014) Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis. Cell 159:1096–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corcoran DL, Georgiev S, Mukherjee N et al (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12:R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Georgiev S, Boyle AP, Jayasurya K et al (2010) Evidence-ranked motif identification. Genome Biol 11:R19

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ono A, Waheed AA, Joshi A et al (2005) Association of human immunodeficiency virus type 1 gag with membrane does not require highly basic sequences in the nucleocapsid: use of a novel Gag multimerization assay. J Virol 79:14131–14140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01AI501111 and P50GM103297. S.B.K. was supported in part by an AmFAR Mathilde Krim Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebla B. Kutluay or Paul D. Bieniasz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kutluay, S.B., Bieniasz, P.D. (2016). Analysis of HIV-1 Gag-RNA Interactions in Cells and Virions by CLIP-seq. In: Prasad, V., Kalpana, G. (eds) HIV Protocols. Methods in Molecular Biology, vol 1354. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3046-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3046-3_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3045-6

  • Online ISBN: 978-1-4939-3046-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics