Whole Genome Amplification in Genomic Analysis of Single Circulating Tumor Cells

  • Christin Gasch
  • Klaus Pantel
  • Sabine RiethdorfEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1347)


Investigation of the genome of organisms is one of the major basics in molecular biology to understand the complex organization of cells. While genomic DNA can easily be isolated from tissues or cell cultures of plant, animal or human origin, DNA extraction from single cells is still challenging. Here, we describe three techniques for the amplification of genomic DNA from fixed single circulating tumor cells (CTC) isolated from blood of cancer patients. This amplification is aimed to increase DNA amounts from those of one cell to yields sufficient for different DNA analyses such as mutational analysis including next-generation sequencing, array-comparative genome hybridization (CGH), and quantitative measurement of gene amplifications. Molecular analysis of CTC as liquid biopsy can be used to identify therapeutic targets in personalized medicine directed, e.g. against human epidermal growth factor receptor 2 (HER2) or epidermal growth factor receptor (EGFR) and to stratify the patients to those therapies.


Whole genome amplification Single cell analysis Circulating tumor cells Multiple-strand displacement amplification Linker-adapter PCR Genomic analysis 



This work was supported by the European Community’s 7th Framework Programme (FP7/2007–2013) under grant agreement no. 202230, acronym GENINCA to KP, and the ERC-2010-AdG_20100317 DISSECT to KP.


  1. 1.
    Geigl JB, Speicher MR (2007) Single-cell isolation from cell suspensions and whole genome amplification from single cells to provide templates for CGH analysis. Nat Protoc 2:3173–3184CrossRefPubMedGoogle Scholar
  2. 2.
    Spits C, Le Caignec C, De Rycke M et al (2006) Whole-genome multiple displacement amplification from single cells. Nat Protoc 1:1965–1970CrossRefPubMedGoogle Scholar
  3. 3.
    Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725CrossRefPubMedGoogle Scholar
  4. 4.
    Moghaddaszadeh-Ahrabi S, Farajnia S, Rahimi-Mianji G et al (2012) A short and simple improved-primer extension preamplification (I-PEP) procedure for whole genome amplification (WGA) of bovine cells. Anim Biotechnol 23:24–42CrossRefPubMedGoogle Scholar
  5. 5.
    Gasch C, Bauernhofer T, Pichler M et al (2013) Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin Chem 59:252–260CrossRefPubMedGoogle Scholar
  6. 6.
    Heitzer E, Auer AM, Gasch C et al (2013) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73:2965–2975CrossRefPubMedGoogle Scholar
  7. 7.
    Hannemann J, Meyer-Staeckling S, Kemming D et al (2011) Quantitative high-resolution genomic analysis of single cancer cells. PLoS One 6, e26362PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Le Caignec C, Spits C, Sermon K et al (2006) Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res 34, e68PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Mathiesen RR, Fjelldal R, Liestol K et al (2012) High-resolution analyses of copy number changes in disseminated tumor cells of patients with breast cancer. Int J Cancer 131:E405–E415CrossRefPubMedGoogle Scholar
  10. 10.
    Klein CA, Blankenstein TJ, Schmidt-Kittler O et al (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360:683–689CrossRefPubMedGoogle Scholar
  11. 11.
    Klein CA, Schmidt-Kittler O, Schardt JA et al (1999) Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A 96:4494–4499PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Treff NR, Su J, Tao X et al (2012) Single-cell whole-genome amplification technique impacts the accuracy of SNP microarray-based genotyping and copy number analyses. Mol Hum Reprod 17:335–343CrossRefGoogle Scholar
  13. 13.
    Peeters DJ, De Laere B, Van den Eynden GG et al (2013) Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from cell search enriched blood samples using dielectrophoretic cell sorting. Br J Cancer 108:1358–1367PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Fabbri F, Carloni S, Zoli W et al (2013) Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett 335:225–231CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christin Gasch
    • 1
  • Klaus Pantel
    • 1
  • Sabine Riethdorf
    • 1
    Email author
  1. 1.Department of Tumor BiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations