Computational Methods for Structural and Functional Studies of Alzheimer’s Amyloid Ion Channels

  • Hyunbum Jang
  • Fernando Teran Arce
  • Joon Lee
  • Alan L. Gillman
  • Srinivasan Ramachandran
  • Bruce L. Kagan
  • Ratnesh Lal
  • Ruth Nussinov
Part of the Methods in Molecular Biology book series (MIMB, volume 1345)

Abstract

Aggregation can be studied by a range of methods, experimental and computational. Aggregates form in solution, across solid surfaces, and on and in the membrane, where they may assemble into unregulated leaking ion channels. Experimental probes of ion channel conformations and dynamics are challenging. Atomistic molecular dynamics (MD) simulations are capable of providing insight into structural details of amyloid ion channels in the membrane at a resolution not achievable experimentally. Since data suggest that late stage Alzheimer’s disease involves formation of toxic ion channels, MD simulations have been used aiming to gain insight into the channel shapes, morphologies, pore dimensions, conformational heterogeneity, and activity. These can be exploited for drug discovery. Here we describe computational methods to model amyloid ion channels containing the β-sheet motif at atomic scale and to calculate toxic pore activity in the membrane.

Key words

Amyloid channel β-Sheet channel Lipid bilayer Molecular dynamics simulations CHARMM NAMD 

References

  1. 1.
    Monsonego A, Zota V, Karni A, Krieger JI, Bar-Or A, Bitan G, Budson AE, Sperling R, Selkoe DJ, Weiner HL (2003) Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. J Clin Invest 112:415–422PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909CrossRefPubMedGoogle Scholar
  3. 3.
    Temussi PA, Masino L, Pastore A (2003) From Alzheimer to Huntington: why is a structural understanding so difficult? EMBO J 22:355–361PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890CrossRefPubMedGoogle Scholar
  5. 5.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRefPubMedGoogle Scholar
  6. 6.
    DeToma AS, Salamekh S, Ramamoorthy A, Lim MH (2012) Misfolded proteins in Alzheimer’s disease and type II diabetes. Chem Soc Rev 41:608–621PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Jang H, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R (2014) Disordered amyloidogenic peptides may insert into the membrane and assemble into common cyclic structural motifs. Chem Soc Rev 43:6750–6764PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Marshall KE, Serpell LC (2010) Fibres, crystals and polymorphism: the structural promiscuity of amyloidogenic peptides. Soft Matter 6:2110–2114CrossRefGoogle Scholar
  10. 10.
    Miller Y, Ma B, Nussinov R (2010) Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev 110:4820–4838PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98CrossRefPubMedGoogle Scholar
  12. 12.
    Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102:10427–10432PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283:29639–29643PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G, Teplow DB, Shea JE, Ruotolo BT, Robinson CV, Bowers MT (2009) Amyloid-beta protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat Chem 1:326–331PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Butterfield SM, Lashuel HA (2010) Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem Int Ed Engl 49:5628–5654CrossRefPubMedGoogle Scholar
  16. 16.
    Matsumura S, Shinoda K, Yamada M, Yokojima S, Inoue M, Ohnishi T, Shimada T, Kikuchi K, Masui D, Hashimoto S, Sato M, Ito A, Akioka M, Takagi S, Nakamura Y, Nemoto K, Hasegawa Y, Takamoto H, Inoue H, Nakamura S, Nabeshima Y, Teplow DB, Kinjo M, Hoshi M (2011) Two distinct amyloid beta-protein (Abeta) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses. J Biol Chem 286:11555–11562PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Relini A, Cavalleri O, Rolandi R, Gliozzi A (2009) The two-fold aspect of the interplay of amyloidogenic proteins with lipid membranes. Chem Phys Lipids 158:1–9CrossRefPubMedGoogle Scholar
  18. 18.
    Garner B (2010) Lipids and Alzheimer’s disease. Biochim Biophys Acta 1801:747–749CrossRefPubMedGoogle Scholar
  19. 19.
    Williams TL, Serpell LC (2011) Membrane and surface interactions of Alzheimer’s A beta peptide—insights into the mechanism of cytotoxicity. FEBS J 278:3905–3917CrossRefPubMedGoogle Scholar
  20. 20.
    Verdier Y, Zarandi M, Penke B (2004) Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J Pept Sci 10:229–248CrossRefPubMedGoogle Scholar
  21. 21.
    Shirwany NA, Payette D, Xie J, Guo Q (2007) The amyloid beta ion channel hypothesis of Alzheimer’s disease. Neuropsychiatr Dis Treat 3:597–612PubMedCentralPubMedGoogle Scholar
  22. 22.
    Buchete NV (2012) Unlocking the atomic-level details of amyloid fibril growth through advanced biomolecular simulations. Biophys J 103:1411–1413PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539CrossRefPubMedGoogle Scholar
  24. 24.
    Kagan BL (2012) Membrane pores in the pathogenesis of neurodegenerative disease. Prog Mol Biol Transl Sci 107:295–325CrossRefPubMedGoogle Scholar
  25. 25.
    Arispe N, Pollard HB, Rojas E (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1–40)] in bilayer membranes. Proc Natl Acad Sci U S A 90:10573–10577PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid β protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90:567–571PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Arispe N, Pollard HB, Rojas E (1994) The ability of amyloid beta-protein [a-Beta-P(1–40)] to form Ca2+ channels provides a mechanism for neuronal death in Alzheimer’s disease. Ann N Y Acad Sci 747:256–266CrossRefPubMedGoogle Scholar
  28. 28.
    Arispe N, Pollard HB, Rojas E (1996) Zn2+ interaction with Alzheimer amyloid β protein calcium channels. Proc Natl Acad Sci U S A 93:1710–1715PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Lin H, Bhatia R, Lal R (2001) Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444CrossRefPubMedGoogle Scholar
  30. 30.
    Jang H, Zheng J, Nussinov R (2007) Models of β-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process. Biophys J 93:1938–1949PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Jang H, Zheng J, Lal R, Nussinov R (2008) New structures help the modeling of toxic amyloidβ ion channels. Trends Biochem Sci 33:91–100CrossRefPubMedGoogle Scholar
  32. 32.
    Jang H, Arce FT, Capone R, Ramachandran S, Lal R, Nussinov R (2009) Misfolded amyloid ion channels present mobile β-sheet subunits in contrast to conventional ion channels. Biophys J 97:3029–3037PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Jang H, Arce FT, Ramachandran S, Capone R, Azimova R, Kagan BL, Nussinov R, Lal R (2010) Truncated β-amyloid peptide channels provide an alternative mechanism for Alzheimer’s disease and down syndrome. Proc Natl Acad Sci U S A 107:6538–6543PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Jang H, Arce FT, Ramachandran S, Capone R, Lal R, Nussinov R (2010) β-Barrel topology of Alzheimer’s β-amyloid ion channels. J Mol Biol 404:917–934CrossRefPubMedGoogle Scholar
  35. 35.
    Jang H, Teran Arce F, Ramachandran S, Capone R, Lal R, Nussinov R (2010) Structural convergence among diverse, toxic β-sheet ion channels. J Phys Chem B 114:9445–9451PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Capone R, Jang H, Kotler SA, Connelly L, Teran Arce F, Ramachandran S, Kagan BL, Nussinov R, Lal R (2012) All-D-enantiomer of β-amyloid peptide forms ion channels in lipid bilayers. J Chem Theory Comput 8:1143–1152PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Capone R, Jang H, Kotler SA, Kagan BL, Nussinov R, Lal R (2012) Probing structural features of Alzheimer’s amyloid-β pores in bilayers using site-specific amino acid substitutions. Biochemistry 51:776–785PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Connelly L, Jang H, Arce FT, Capone R, Kotler SA, Ramachandran S, Kagan BL, Nussinov R, Lal R (2012) Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer’s β-amyloid peptide: relevance to the ion channel mechanism of AD pathology. J Phys Chem B 116:1728–1735PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Connelly L, Jang H, Arce FT, Ramachandran S, Kagan BL, Nussinov R, Lal R (2012) Effects of point substitutions on the structure of toxic Alzheimer’s β-amyloid channels: atomic force microscopy and molecular dynamics simulations. Biochemistry 51:3031–3038CrossRefPubMedGoogle Scholar
  40. 40.
    Jang H, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R (2013) Familial Alzheimer’s disease Osaka mutant (ΔE22) β-barrels suggest an explanation for the different Aβ1-40/42 preferred conformational states observed by experiment. J Phys Chem B 117:11518–11529PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Jang H, Connelly L, Arce FT, Ramachandran S, Lal R, Kagan BL, Nussinov R (2013) Alzheimer’s disease: which type of amyloid-preventing drug agents to employ? Phys Chem Chem Phys 15:8868–8877PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Gillman AL, Jang H, Lee J, Ramachandran S, Kagan BL, Nussinov R, Teran Arce F (2014) Activity and architecture of pyroglutamate-modified amyloid-β (AβpE3-42) pores. J Phys Chem B 118:7335–7344PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Mustata M, Capone R, Jang H, Arce FT, Ramachandran S, Lal R, Nussinov R (2009) K3 fragment of amyloidogenic β2-microglobulin forms ion channels: implication for dialysis related amyloidosis. J Am Chem Soc 131:14938–14945PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Jang H, Ma B, Lal R, Nussinov R (2008) Models of toxic β-sheet channels of protegrin-1 suggest a common subunit organization motif shared with toxic Alzheimer β-amyloid ion channels. Biophys J 95:4631–4642PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Capone R, Mustata M, Jang H, Arce FT, Nussinov R, Lal R (2010) Antimicrobial protegrin-1 forms ion channels: molecular dynamic simulation, atomic force microscopy, and electrical conductance studies. Biophys J 98:2644–2652PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Jang H, Connelly L, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R (2013) Mechanisms for the insertion of toxic, fibril-like β-amyloid oligomers into the membrane. J Chem Theory Comput 9:822–833PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Ladiwala AR, Litt J, Kane RS, Aucoin DS, Smith SO, Ranjan S, Davis J, Vannostrand WE, Tessier PM (2012) Conformational differences between two amyloid beta oligomers of similar size and dissimilar toxicity. J Biol Chem 287:24765–24773PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Evidence of fibril-like beta-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s beta-amyloid. Nat Struct Mol Biol 14:1157–1164CrossRefPubMedGoogle Scholar
  49. 49.
    Ma B, Nussinov R (2002) Stabilities and conformations of Alzheimer’s β-amyloid peptide oligomers (Aβ16–22, Aβ16–35, and Aβ10–35): sequence effects. Proc Natl Acad Sci U S A 99:14126–14131PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Doeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc Natl Acad Sci U S A 102:17342–17347PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Bertini I, Gonnelli L, Luchinat C, Mao J, Nesi A (2011) A new structural model of Aβ40 fibrils. J Am Chem Soc 133:16013–16022CrossRefPubMedGoogle Scholar
  53. 53.
    Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of β2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci U S A 103:18119–18124PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Zheng J, Jang H, Ma B, Nussinov R (2008) Annular structures as intermediates in fibril formation of Alzheimer Aβ17–42. J Phys Chem B 112:6856–6865PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Zheng J, Jang H, Nussinov R (2008) β2-microglobulin amyloid fragment organization and morphology and its comparison to Aβ suggests that amyloid aggregation pathways are sequence specific. Biochemistry 47:2497–2509CrossRefPubMedGoogle Scholar
  56. 56.
    Arce FT, Jang H, Ramachandran S, Landon PB, Nussinov R, Lal R (2011) Polymorphism of amyloid β peptide in different environments: implications for membrane insertion and pore formation. Soft Matter 7:5267–5273PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Lee J, Gillman AL, Jang H, Ramachandran S, Kagan BL, Nussinov R, Teran Arce F (2014) Role of the fast kinetics of pyroglutamate-modified amyloid-β oligomers in membrane binding and membrane permeability. Biochemistry 53:4704–4714PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Ferguson N, Becker J, Tidow H, Tremmel S, Sharpe TD, Krause G, Flinders J, Petrovich M, Berriman J, Oschkinat H, Fersht AR (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci U S A 103:16248–16253PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Gupta K, Jang H, Harlen K, Puri A, Nussinov R, Schneider JP, Blumenthal R (2013) Mechanism of membrane permeation induced by synthetic β-hairpin peptides. Biophys J 105:2093–2103PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Miyasaki KT, Lehrer RI (1998) Beta-sheet antibiotic peptides as potential dental therapeutics. Int J Antimicrob Agents 9:269–280CrossRefPubMedGoogle Scholar
  61. 61.
    Roumestand C, Louis V, Aumelas A, Grassy G, Calas B, Chavanieu A (1998) Oligomerization of protegrin-1 in the presence of DPC micelles. A proton high-resolution NMR study. FEBS Lett 421:263–267CrossRefPubMedGoogle Scholar
  62. 62.
    Fahrner RL, Dieckmann T, Harwig SS, Lehrer RI, Eisenberg D, Feigon J (1996) Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem Biol 3:543–550CrossRefPubMedGoogle Scholar
  63. 63.
    Jang H, Ma B, Woolf TB, Nussinov R (2006) Interaction of protegrin-1 with lipid bilayers: membrane thinning effect. Biophys J 91:2848–2859PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Jang H, Ma B, Nussinov R (2007) Conformational study of the protegrin-1 (PG-1) dimer interaction with lipid bilayers and its effect. BMC Struct Biol 7:21PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Woolf TB, Roux B (1994) Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci U S A 91:11631–11635PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Woolf TB, Roux B (1996) Structure, energetics, and dynamics of lipid-protein interactions: a molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins 24:92–114CrossRefPubMedGoogle Scholar
  67. 67.
    Kucerka N, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208:193–202CrossRefPubMedGoogle Scholar
  68. 68.
    Petrache HI, Tristram-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys J 86:1574–1586PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Rand RP, Parsegian VA (1989) Hydration forces between phospholipid-bilayers. Biochim Biophys Acta 988:351–376CrossRefGoogle Scholar
  70. 70.
    Mukhopadhyay P, Monticelli L, Tieleman DP (2004) Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Biophys J 86:1601–1609PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Rog T, Murzyn K, Pasenkiewicz-Gierula M (2003) Molecular dynamics simulations of charged and neutral lipid bilayers: treatment of electrostatic interactions. Acta Biochim Pol 50:789–798PubMedGoogle Scholar
  72. 72.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM—a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217CrossRefGoogle Scholar
  73. 73.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comp Chem 26:1781–1802CrossRefGoogle Scholar
  74. 74.
    Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Durell SR, Brooks BR, Bennaim A (1994) Solvent-induced forces between two hydrophilic groups. J Phys Chem 98:2198–2202CrossRefGoogle Scholar
  76. 76.
    Zirah S, Kozin SA, Mazur AK, Blond A, Cheminant M, Segalas-Milazzo I, Debey P, Rebuffat S (2006) Structural changes of region 1–16 of the Alzheimer disease amyloid β-peptide upon zinc binding and in vitro aging. J Biol Chem 281:2151–2161CrossRefPubMedGoogle Scholar
  77. 77.
    Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565:308–317CrossRefPubMedGoogle Scholar
  78. 78.
    Sansom MS, Kerr ID (1995) Transbilayer pores formed by beta-barrels: molecular modeling of pore structures and properties. Biophys J 69:1334–1343PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415CrossRefPubMedGoogle Scholar
  80. 80.
    Connelly L, Jang H, Teran Arce F, Capone R, Kotler SA, Ramachandran S, Kagan BL, Nussinov R, Lal R (2012) Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer’s beta-amyloid peptide relevance to the ion channel mechanism of AD pathology. J Phys Chem B. doi:10.1021/jp2108126 PubMedCentralPubMedGoogle Scholar
  81. 81.
    de Groot NS, Aviles FX, Vendrell J, Ventura S (2006) Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer’s peptide. Side-chain properties correlate with aggregation propensities. FEBS J 273:658–668CrossRefPubMedGoogle Scholar
  82. 82.
    Jawhar S, Wirths O, Bayer TA (2011) Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease. J Biol Chem 286:38825–38832PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Saido TC, Iwatsubo T, Mann DMA, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct β-amyloid peptide species, a-beta(N3(Pe)), in senile plaques. Neuron 14:457–466CrossRefPubMedGoogle Scholar
  84. 84.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17PubMedCentralCrossRefPubMedGoogle Scholar
  85. 85.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.01. Wallingford CTGoogle Scholar
  86. 86.
    Smart OS, Goodfellow JM, Wallace BA (1993) The pore dimensions of gramicidin-A. Biophys J 65:2455–2460PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Zhao J, Luo Y, Jang H, Yu X, Wei G, Nussinov R, Zheng J (2012) Probing ion channel activity of human islet amyloid polypeptide (amylin). Biochim Biophys Acta 1818:3121–3130PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566–579CrossRefPubMedGoogle Scholar
  89. 89.
    Wriggers W, Mehler E, Pitici F, Weinstein H, Schulten K (1998) Structure and dynamics of calmodulin in solution. Biophys J 74:1622–1639PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Allen TW, Andersen OS, Roux B (2006) Molecular dynamics—potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. Biophys Chem 124:251–267CrossRefPubMedGoogle Scholar
  91. 91.
    de Groot BL, Grubmuller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357CrossRefPubMedGoogle Scholar
  92. 92.
    Leontiadou H, Mark AE, Marrink SJ (2007) Ion transport across transmembrane pores. Biophys J 92:4209–4215PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Allen TW, Andersen OS, Roux B (2004) Energetics of ion conduction through the gramicidin channel. Proc Natl Acad Sci U S A 101:117–122PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hyunbum Jang
    • 1
  • Fernando Teran Arce
    • 2
    • 3
  • Joon Lee
    • 3
  • Alan L. Gillman
    • 2
  • Srinivasan Ramachandran
    • 2
    • 3
  • Bruce L. Kagan
    • 4
  • Ratnesh Lal
    • 2
    • 3
  • Ruth Nussinov
    • 1
    • 5
  1. 1.Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchNational Cancer Institute at FrederickFrederickUSA
  2. 2.Department of Bioengineering, Materials Science ProgramUniversity of California, San DiegoLa JollaUSA
  3. 3.Department of Mechanical and Aerospace Engineering, Materials Science ProgramUniversity of California, San DiegoLa JollaUSA
  4. 4.Department of Psychiatry, David Geffen School of Medicine, Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesUSA
  5. 5.Department of Human Molecular Genetics and Biochemistry, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations