Analysis of Epithelial–Mesenchymal Transition Induced by Transforming Growth Factor β

  • Ulrich Valcourt
  • Jonathon Carthy
  • Yukari Okita
  • Lindsay Alcaraz
  • Mitsuyasu Kato
  • Sylvie Thuault
  • Laurent Bartholin
  • Aristidis Moustakas
Part of the Methods in Molecular Biology book series (MIMB, volume 1344)


In recent years, the importance of the cell biological process of epithelial–mesenchymal transition (EMT) has been established via an exponentially growing number of reports. EMT has been documented during embryonic development, tissue fibrosis, and cancer progression in vitro, in animal models in vivo and in human specimens. EMT relates to many molecular and cellular alterations that occur when epithelial cells undergo a switch in differentiation that generates mesenchymal-like cells with newly acquired migratory and invasive properties. In addition, EMT relates to a nuclear reprogramming similar to the one occurring in the generation of induced pluripotent stem cells. Via such a process, EMT is gradually established to promote the generation and maintenance of adult tissue stem cells which under disease states such as cancer, are known as cancer stem cells. EMT is induced by developmental growth factors, oncogenes, radiation, and hypoxia. A prominent growth factor that causes EMT is transforming growth factor β (TGF-β).

A series of molecular and cellular techniques can be applied to define and characterize the state of EMT in diverse biological samples. These methods range from DNA and RNA-based techniques that measure the expression of key EMT regulators and markers of epithelial or mesenchymal differentiation to functional assays of cell mobility, invasiveness and in vitro stemness. This chapter focuses on EMT induced by TGF-β and provides authoritative protocols and relevant reagents and citations of key publications aiming at assisting newcomers that enter this prolific area of biomedical sciences, and offering a useful reference tool to pioneers and aficionados of the field.

Key words

Cellular plasticity Epithelial–mesenchymal transition Invasion Motility Signal transduction Transcription factor Transforming growth factor β 



We acknowledge funding by the Ludwig Institute for Cancer Research, the Swedish Cancer Society and the Swedish Research Council (A.M.). We also acknowledge funding by the “Ligue Nationale Contre le Cancer” (LNCC) (L.A.), the “Comité du Rhône de la Ligue Nationale Contre le Cancer” (U.V.) and the “Institut National du Cancer” (INCa) (L.B.).

We thank all past and present members of our groups for their contributions to the scientific work emanating from our laboratories. This chapter summarizes work from a selected number of published papers, however, due to space limitations, we have been unable to include all relevant publications in our discussion. We apologize to those authors whose relevant work has not been included in this review chapter.

We declare no conflict of interest.


  1. 1.
    Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat 154(1):8–20CrossRefPubMedGoogle Scholar
  2. 2.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890CrossRefPubMedGoogle Scholar
  3. 3.
    Savagner P, Kusewitt DF, Carver EA, Magnino F, Choi C, Gridley T et al (2005) Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol 202(3):858–866CrossRefPubMedGoogle Scholar
  4. 4.
    Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110(3):341–350, PMCID: 151091PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715, PMCID: 2728032PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3(8), e2888, PMCID: 2492808PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C et al (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14(1):79–89CrossRefPubMedGoogle Scholar
  8. 8.
    Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J et al (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition. Nat Cell Biol 11(8):943–950PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127(6 Pt 2):2021–2036, PMCID: 2120317CrossRefPubMedGoogle Scholar
  10. 10.
    Piek E, Moustakas A, Kurisaki A, Heldin C-H, ten Dijke P (1999) TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112(Pt 24):4557–4568PubMedGoogle Scholar
  11. 11.
    Valcourt U, Kowanetz M, Niimi H, Heldin C-H, Moustakas A (2005) TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16(4):1987–2002, PMCID: 1073677PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Mu Y, Sundar R, Thakur N, Ekman M, Gudey SK, Yakymovych M et al (2011) TRAF6 ubiquitinates TGFβ type I receptor to promote its cleavage and nuclear translocation in cancer. Nat Commun 2:330, PMCID: 3113296PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275(47):36803–36810CrossRefPubMedGoogle Scholar
  14. 14.
    Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME et al (2001) Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12(1):27–36, PMCID: 30565PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL (2001) Integrin β 1 signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity. J Biol Chem 276(50):46707–46713CrossRefPubMedGoogle Scholar
  16. 16.
    Cicchini C, Laudadio I, Citarella F, Corazzari M, Steindler C, Conigliaro A et al (2008) TGFβ-induced EMT requires focal adhesion kinase (FAK) signaling. Exp Cell Res 314(1):143–152CrossRefPubMedGoogle Scholar
  17. 17.
    Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL (2002) p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115(Pt 15):3193–3206PubMedGoogle Scholar
  18. 18.
    Galliher AJ, Schiemann WP (2007) Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 67(8):3752–3758CrossRefPubMedGoogle Scholar
  19. 19.
    Wendt MK, Tian M, Schiemann WP (2012) Deconstructing the mechanisms and consequences of TGF-β-induced EMT during cancer progression. Cell Tissue Res 347(1):85–101PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307(5715):1603–1609CrossRefPubMedGoogle Scholar
  21. 21.
    Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84–89CrossRefPubMedGoogle Scholar
  22. 22.
    Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83CrossRefPubMedGoogle Scholar
  23. 23.
    Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62(6):1613–1618PubMedGoogle Scholar
  24. 24.
    Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116(Pt 3):499–511CrossRefPubMedGoogle Scholar
  25. 25.
    Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al (2005) ΔEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24(14):2375–2385CrossRefPubMedGoogle Scholar
  26. 26.
    Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7(6):1267–1278CrossRefPubMedGoogle Scholar
  27. 27.
    Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA et al (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 276(29):27424–27431CrossRefPubMedGoogle Scholar
  28. 28.
    Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939CrossRefPubMedGoogle Scholar
  29. 29.
    Kowanetz M, Valcourt U, Bergstrom R, Heldin CH, Moustakas A (2004) Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein. Mol Cell Biol 24(10):4241–4254, PMCID: 400464PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Kondo M, Cubillo E, Tobiume K, Shirakihara T, Fukuda N, Suzuki H et al (2004) A role for Id in the regulation of TGF-β-induced epithelial-mesenchymal transdifferentiation. Cell Death Differ 11(10):1092–1101CrossRefPubMedGoogle Scholar
  31. 31.
    Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin C-H, Moustakas A (2006) Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174(2):175–183, PMCID: 2064178PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Thuault S, Tan E-J, Peinado H, Cano A, Heldin C-H, Moustakas A (2008) HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 283(48):33437–33446, PMCID: 2662269PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Tan E-J, Thuault S, Caja L, Carletti T, Heldin C-H, Moustakas A (2012) Regulation of transcription factor Twist expression by the DNA architectural protein high mobility group A2 during epithelial-to-mesenchymal transition. J Biol Chem 287(10):7134–7145, PMCID: 3293571PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Moustakas A, Heldin C-H (2012) Induction of epithelial-mesenchymal transition by transforming growth factor β. Semin Cancer Biol 22(5–6):446–454CrossRefPubMedGoogle Scholar
  35. 35.
    Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13(10):616–630PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Nieto MA (2011) The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 27:347–376CrossRefPubMedGoogle Scholar
  37. 37.
    Sundqvist A, Zieba A, Vasilaki E, Herrera Hidalgo C, Söderberg O, Koinuma D et al (2013) Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion. Oncogene 32(31):3606–3615CrossRefPubMedGoogle Scholar
  38. 38.
    Brown KA, Aakre ME, Gorska AE, Price JO, Eltom SE, Pietenpol JA et al (2004) Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 6(3):R215–R231, PMCID: 400675PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Masuda A, Kondo M, Saito T, Yatabe Y, Kobayashi T, Okamoto M et al (1997) Establishment of human peripheral lung epithelial cell lines (HPL1) retaining differentiated characteristics and responsiveness to epidermal growth factor, hepatocyte growth factor, and transforming growth factor β1. Cancer Res 57(21):4898–4904PubMedGoogle Scholar
  40. 40.
    Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A et al (1996) TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86(4):531–542CrossRefPubMedGoogle Scholar
  41. 41.
    Portella G, Cumming SA, Liddell J, Cui W, Ireland H, Akhurst RJ et al (1998) Transforming growth factor β is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ 9(5):393–404PubMedGoogle Scholar
  42. 42.
    Oft M, Heider KH, Beug H (1998) TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8(23):1243–1252CrossRefPubMedGoogle Scholar
  43. 43.
    Peinado H, Quintanilla M, Cano A (2003) Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278(23):21113–21123CrossRefPubMedGoogle Scholar
  44. 44.
    Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558CrossRefPubMedGoogle Scholar
  45. 45.
    Hesling C, Fattet L, Teyre G, Jury D, Gonzalo P, Lopez J et al (2011) Antagonistic regulation of EMT by TIF1γ and Smad4 in mammary epithelial cells. EMBO Rep 12(7):665–672, PMCID: 3128966PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145(6):926–940PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Vincent DF, Yan KP, Treilleux I, Gay F, Arfi V, Kaniewski B et al (2009) Inactivation of TIF1γ cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet 5(7), e1000575, PMCID: 2706992PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Vincent DF, Gout J, Chuvin N, Arfi V, Pommier RM, Bertolino P et al (2012) Tif1γ suppresses murine pancreatic tumoral transformation by a Smad4-independent pathway. Am J Pathol 180(6):2214–2221, PMCID: 3378851PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Xie L, Law BK, Aakre ME, Edgerton M, Shyr Y, Bhowmick NA et al (2003) Transforming growth factor β-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res 5(6):R187–R198, PMCID: 314403PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Jechlinger M, Grunert S, Tamir IH, Janda E, Ludemann S, Waerner T et al (2003) Expression profiling of epithelial plasticity in tumor progression. Oncogene 22(46):7155–7169CrossRefPubMedGoogle Scholar
  51. 51.
    Levy L, Hill CS (2005) Smad4 dependency defines two classes of transforming growth factor β (TGF-β) target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 25(18):8108–8125, PMCID: 1234333PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Gervasi M, Bianchi-Smiraglia A, Cummings M, Zheng Q, Wang D, Liu S et al (2012) JunB contributes to Id2 repression and the epithelial-mesenchymal transition in response to transforming growth factor-β. J Cell Biol 196(5):589–603, PMCID: 3307698PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S et al (2006) Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res 66(19):9543–9556CrossRefPubMedGoogle Scholar
  54. 54.
    Mori M, Nakagami H, Koibuchi N, Miura K, Takami Y, Koriyama H et al (2009) Zyxin mediates actin fiber reorganization in epithelial-mesenchymal transition and contributes to endocardial morphogenesis. Mol Biol Cell 20(13):3115–3124, PMCID: 2704162PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Haynes J, Srivastava J, Madson N, Wittmann T, Barber DL (2011) Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell 22(24):4750–4764, PMCID: 3237619PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Koinuma D, Tsutsumi S, Kamimura N, Imamura T, Aburatani H, Miyazono K (2009) Promoter-wide analysis of Smad4 binding sites in human epithelial cells. Cancer Sci 100(11):2133–2142CrossRefPubMedGoogle Scholar
  57. 57.
    Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH et al (2011) An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet 7(8), e1002218, PMCID: 3158048PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601CrossRefPubMedGoogle Scholar
  59. 59.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270, PMCID: 196056PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Gal A, Sjöblom T, Fedorova L, Imreh S, Beug H, Moustakas A (2008) Sustained TGF β exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene 27(9):1218–1230CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ulrich Valcourt
    • 1
    • 2
    • 3
    • 4
    • 5
  • Jonathon Carthy
    • 6
  • Yukari Okita
    • 6
    • 7
  • Lindsay Alcaraz
    • 1
    • 2
    • 3
    • 4
    • 5
  • Mitsuyasu Kato
    • 7
  • Sylvie Thuault
    • 8
  • Laurent Bartholin
    • 1
    • 2
    • 3
    • 4
    • 5
  • Aristidis Moustakas
    • 6
    • 9
  1. 1.Inserm U1052, Centre de Recherche en Cancérologie de LyonLyonFrance
  2. 2.CNRS UMR 5286, Centre de Recherche en Cancérologie de LyonLyonFrance
  3. 3.Université de LyonLyonFrance
  4. 4.Université Lyon 1LyonFrance
  5. 5.Centre Léon BérardLyonFrance
  6. 6.Ludwig Institute for Cancer Research, Science for Life LaboratoryUppsala UniversityUppsalaSweden
  7. 7.Department of Experimental Pathology, Graduate School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
  8. 8.INSERM UMR 911 CRO2, Faculty of PharmacyMarseilleFrance
  9. 9.Department of Medical Biochemistry and Microbiology, Science for Life LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations