Advertisement

Laboratory and Data Analysis Methods for Characterization of Human B Cell Repertoires by High-Throughput DNA Sequencing

  • Chen Wang
  • Yi Liu
  • Krishna M. Roskin
  • Katherine J. L. Jackson
  • Scott D. Boyd
Part of the Methods in Molecular Biology book series (MIMB, volume 1343)

Abstract

High-throughput DNA sequencing techniques have greatly accelerated the pace of research into the repertoires of antibody and T cell receptor gene rearrangements that confer antigen specificity to adaptive immune responses. Studies of aging-related changes in human B cell repertoires have benefited from the ability to detect and quantify thousands to millions of B cell clones in human samples, and study the mutational lineages and isotype switching relationships within each clonal lineage. Correlation of repertoire analysis with antibody gene data from antigen-specific B cells is poised to give much greater insight into clinically relevant B cell responses and memory storage. Here, we describe strategies for preparing and analyzing human antibody gene libraries for studying B cell repertoires.

Key words

Antibody Immunoglobulin High-throughput DNA sequencing Deep sequencing Repertoire Immunome Aging 

References

  1. 1.
    Jung D, Alt FW (2004) Unraveling V(D)J recombination; insights into gene regulation. Cell 116(2):299–311PubMedCrossRefGoogle Scholar
  2. 2.
    Hozumi N, Tonegawa S (1976) Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci U S A 73(10):3628–3632PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, Simen BB, Hanczaruk B, Nguyen KD, Nadeau KC, Egholm M, Miklos DB, Zehnder JL, Fire AZ (2009) Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 1(12):12–23CrossRefGoogle Scholar
  4. 4.
    Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, Riddell SR, Warren EH, Carlson CS (2009) Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114(19):4099–4107, doi: blood-2009-04-217604 [pii]10.1182/blood-2009-04-217604PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Campbell PJ, Pleasance ED, Stephens PJ, Dicks E, Rance R, Goodhead I, Follows GA, Green AR, Futreal PA, Stratton MR (2008) Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc Natl Acad Sci U S A 105(35):13081–13086, doi: 0801523105 [pii]10.1073/pnas.0801523105PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wang C, Sanders CM, Yang Q, Schroeder HW Jr, Wang E, Babrzadeh F, Gharizadeh B, Myers RM, Hudson JR Jr, Davis RW, Han J (2010) High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc Natl Acad Sci U S A 107(4):1518–1523, doi: 0913939107 [pii]10.1073/pnas.0913939107PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380, doi: nature03959 [pii]10.1038/nature03959PubMedPubMedCentralGoogle Scholar
  8. 8.
    Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA (2009) Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 19(10):1817–1824, doi: gr.092924.109 [pii]10.1101/gr.092924.109PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wu YC, Kipling D, Leong HS, Martin V, Ademokun AA, Dunn-Walters DK (2010) High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116(7):1070–1078, doi: blood-2010-03-275859 [pii]10.1182/blood-2010-03-275859PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS, McIntosh T, Asher TE, Almeida JR, Levy S, Price DA, Davenport MP, Douek DC (2011) A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. J Immunol 186(7):4285–4294, doi: jimmunol.1003898 [pii]10.4049/jimmunol.1003898PubMedCrossRefGoogle Scholar
  11. 11.
    Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, Ni I, Mei L, Sundar PD, Day GM, Cox D, Rajpal A, Pons J (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A 106(48):20216–20221, doi: 0909775106 [pii]10.1073/pnas.0909775106PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IM, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DM, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC, Carter NP, Castillo N, Chiara ECM, Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo SM, O'Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59, doi: nature07517 [pii]10.1038/nature07517PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Glanville J, Kuo TC, von Budingen HC, Guey L, Berka J, Sundar PD, Huerta G, Mehta GR, Oksenberg JR, Hauser SL, Cox DR, Rajpal A, Pons J (2011) Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc Natl Acad Sci U S A 108(50):20066–20071, doi: 1107498108 [pii]10.1073/pnas.1107498108PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, Fire AZ, Roskin KM, Schramm CA, Zhang Z, Zhu J, Shapiro L, Becker J, Benjamin B, Blakesley R, Bouffard G, Brooks S, Coleman H, Dekhtyar M, Gregory M, Guan X, Gupta J, Han J, Hargrove A, Ho SL, Johnson T, Legaspi R, Lovett S, Maduro Q, Masiello C, Maskeri B, McDowell J, Montemayor C, Mullikin J, Park M, Riebow N, Schandler K, Schmidt B, Sison C, Stantripop M, Thomas J, Thomas P, Vemulapalli M, Young A, Mullikin JC, Gnanakaran S, Hraber P, Wiehe K, Kelsoe G, Yang G, Xia SM, Montefiori DC, Parks R, Lloyd KE, Scearce RM, Soderberg KA, Cohen M, Kamanga G, Louder MK, Tran LM, Chen Y, Cai F, Chen S, Moquin S, Du X, Joyce MG, Srivatsan S, Zhang B, Zheng A, Shaw GM, Hahn BH, Kepler TB, Korber BT, Kwong PD, Mascola JR, Haynes BF (2013) Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496(7446):469–476. doi: 10.1038/nature12053 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Liao HX, Chen X, Munshaw S, Zhang R, Marshall DJ, Vandergrift N, Whitesides JF, Lu X, Yu JS, Hwang KK, Gao F, Markowitz M, Heath SL, Bar KJ, Goepfert PA, Montefiori DC, Shaw GC, Alam SM, Margolis DM, Denny TN, Boyd SD, Marshal E, Egholm M, Simen BB, Hanczaruk B, Fire AZ, Voss G, Kelsoe G, Tomaras GD, Moody MA, Kepler TB, Haynes BF (2011) Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J Exp Med 208(11):2237–2249. doi: 10.1084/jem.20110363 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K, Pietzsch J, Ott RG, Anthony RM, Zebroski H, Hurley A, Phogat A, Chakrabarti B, Li Y, Connors M, Pereyra F, Walker BD, Wardemann H, Ho D, Wyatt RT, Mascola JR, Ravetch JV, Nussenzweig MC (2009) Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458(7238):636–640. doi: 10.1038/nature07930 PubMedCrossRefGoogle Scholar
  17. 17.
    van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17(12):2257–2317. doi: 10.1038/sj.leu.2403202 PubMedCrossRefGoogle Scholar
  18. 18.
    Tobisawa Y, Maruyama T, Tanikawa T, Nakanishi K, Kurohane K, Imai Y (2011) Establishment of recombinant hybrid-IgG/IgA immunoglobulin specific for Shiga toxin. Scand J Immunol 74(6):574–584. doi: 10.1111/j.1365-3083.2011.02617.x PubMedCrossRefGoogle Scholar
  19. 19.
    Weinstein JA, Jiang N, White RA 3rd, Fisher DS, Quake SR (2009) High-throughput sequencing of the zebrafish antibody repertoire. Science 324(5928):807–810, doi: 324/5928/807 [pii]10.1126/science.11700PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, Chen X, Longo NS, Louder M, McKee K, O’Dell S, Perfetto S, Schmidt SD, Shi W, Wu L, Yang Y, Yang ZY, Yang Z, Zhang Z, Bonsignori M, Crump JA, Kapiga SH, Sam NE, Haynes BF, Simek M, Burton DR, Koff WC, Doria-Rose NA, Connors M, Mullikin JC, Nabel GJ, Roederer M, Shapiro L, Kwong PD, Mascola JR (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333(6049):1593–1602, doi: science.1207532 [pii]10.1126/science.1207532PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Robins H, Desmarais C, Matthis J, Livingston R, Andriesen J, Reijonen H, Carlson C, Nepom G, Yee C, Cerosaletti K (2011) Ultra-sensitive detection of rare T cell clones. J Immunol Methods 375(1-2):14–19, doi: S0022-1759(11)00246-8 [pii]10.1016/j.jim.2011.09.001PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Brochet X, Lefranc MP, Giudicelli V (2008) IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 36(Web Server issue):503–508. doi: 10.1093/nar/gkn316 CrossRefGoogle Scholar
  23. 23.
    Giudicelli V, Brochet X, Lefranc MP (2011) IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb Protoc 2011(6):695–715. doi: 10.1101/pdb.prot5633 PubMedGoogle Scholar
  24. 24.
    Gaeta BA, Malming HR, Jackson KJ, Bain ME, Wilson P, Collins AM (2007) iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences. Bioinformatics 23(13):1580–1587, doi: btm147 [pii]10.1093/bioinformatics/btm147PubMedCrossRefGoogle Scholar
  25. 25.
    Russell SJ, Norvig P (2003) Artificial intelligence: a modern approach. Pearson Education, Upper Saddle River, NJGoogle Scholar
  26. 26.
    Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P (1999) A direct estimate of the human alphabeta T cell receptor diversity. Science 286(5441):958–961, doi: 7939 [pii]PubMedCrossRefGoogle Scholar
  27. 27.
    Ganusov VV, De Boer RJ (2007) Do most lymphocytes in humans really reside in the gut? Trends Immunol 28(12):514–518, doi: S1471-4906(07)00231-1 [pii]10.1016/j.it.2007.08.009PubMedCrossRefGoogle Scholar
  28. 28.
    Greer JP, Foerster J, Rodgers GM, Paraskevas F, Glader B, Arber DA, Means RT (2008) Wintrobe’s clinical hematology, vol 1. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  29. 29.
    Morbach H, Eichhorn EM, Liese JG, Girschick HJ (2010) Reference values for B cell subpopulations from infancy to adulthood. Clin Exp Immunol 162(2):271–279. doi: 10.1111/j.1365-2249.2010.04206.x PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chen Wang
    • 1
  • Yi Liu
    • 1
    • 2
  • Krishna M. Roskin
    • 1
  • Katherine J. L. Jackson
    • 1
  • Scott D. Boyd
    • 1
  1. 1.Department of PathologyStanford UniversityStanfordUSA
  2. 2.Biomedical Informatics Training ProgramStanford UniversityStanfordUSA

Personalised recommendations