Skip to main content

Combining the Optimized Yeast Cytosine Deaminase Protein Fragment Complementation Assay and an In Vitro Cdk1 Targeting Assay to Study the Regulation of the γ-Tubulin Complex

  • Protocol
Cell Cycle Oscillators

Abstract

Cdk1 is the essential cyclin-dependent kinase in the budding yeast Saccharomyces cerevisiae. Cdk1 orchestrates cell cycle control by phosphorylating target proteins with extraordinary temporal and spatial specificity by complexing with one of the nine cyclin regulatory subunits. The identification of the cyclin required for targeting Cdk1 to a substrate can help to place the regulation of that protein at a specific time point during the cell cycle and reveal information needed to elucidate the biological significance of the regulation. Here, we describe a combination of strategies to identify interaction partners of Cdk1, and associate these complexes to the appropriate cyclins using a cell-based protein-fragment complementation assay. Validation of the specific reliance of the OyCD interaction between Cdk1 and budding yeast γ-tubulin on the Clb3 cyclin, relative to the mitotic Clb2 cyclin, was performed by an in vitro kinase assay using the γ-tubulin complex as a substrate.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-2957-3_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloom J, Cross F (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8:149–160

    Article  CAS  PubMed  Google Scholar 

  2. Mendenhall MD (1993) An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science 259:216–219

    Article  CAS  PubMed  Google Scholar 

  3. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  PubMed  Google Scholar 

  4. Archambault V, Chang EJ, Drapkin BJ, Cross FR, Chait BT, Rout MP (2004) Targeted proteomic study of the cyclin-Cdk module. Mol Cell 14:699–711

    Article  CAS  PubMed  Google Scholar 

  5. Loog M, Morgan DO (2005) Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434:104–108

    Article  CAS  PubMed  Google Scholar 

  6. Agarwal R, Cohen-Fix O (2002) Phosphorylation of the mitotic regulator Pds1/securin by Cdc28 is required for efficient nuclear localization of Esp1/separase. Genes Dev 16:1371–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864

    Article  CAS  PubMed  Google Scholar 

  8. Keck JM, Jones MH, Wong CC, Binkley J, Chen D, Jaspersen SL, Holinger EP, Xu T, Niepel M, Rout MP et al (2011) A cell cycle phosphoproteome of the yeast centrosome. Science 332:1557–1561

    Article  CAS  PubMed  Google Scholar 

  9. Kollman JM, Greenberg CH, Li S, Moritz M, Zelter A, Fong KK, Fernandez JJ, Sali A, Kilmartin J, Davis TN et al (2015) Ring closure activates yeast gammaTuRC for species-specific microtubule nucleation. Nat Struct Mol Biol 2:132–137

    Google Scholar 

  10. Ear PH, Michnick SW (2009) A general life-death selection strategy for dissecting protein functions. Nat Methods 6:813–816

    Article  CAS  PubMed  Google Scholar 

  11. Ear PH, Booth MJ, Abd-Rabbo D, Kowarzyk Moreno J, Hall C, Chen D, Vogel J, Michnick SW (2013) Dissection of Cdk1-cyclin complexes in vivo. Proc Natl Acad Sci U S A 110:15716–15721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  CAS  PubMed  Google Scholar 

  13. Liakopoulos D, Kusch J, Grava S, Vogel J, Barral Y (2003) Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112:561–574

    Article  CAS  PubMed  Google Scholar 

  14. Kollman JM, Polka JK, Zelter A, Davis TN, Agard DA (2010) Microtubule nucleating gamma-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466:879–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nazarova E, O’Toole E, Kaitna S, Francois P, Winey M, Vogel J (2013) Distinct roles for antiparallel microtubule pairing and overlap during early spindle assembly. Mol Biol Cell 24:3238–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  17. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972

    Article  CAS  PubMed  Google Scholar 

  18. Tropea JE, Cherry S, Waugh DS (2009) Expression and purification of soluble His(6)-tagged TEV protease. Methods Mol Biol 498:297–307

    Article  CAS  PubMed  Google Scholar 

  19. Koivomagi M, Valk E, Venta R, Iofik A, Lepiku M, Morgan DO, Loog M (2011) Dynamics of Cdk1 substrate specificity during the cell cycle. Mol Cell 42:610–623

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  21. Abràmoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  22. Vinh DB, Kern JW, Hancock WO, Howard J, Davis TN (2002) Reconstitution and characterization of budding yeast gamma-tubulin complex. Mol Biol Cell 13:1144–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koivomagi M, Valk E, Venta R, Iofik A, Lepiku M, Balog ER, Rubin SM, Morgan DO, Loog M (2011) Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature 480:128–131

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jackie Vogel or Stephen W. Michnick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ear, P.H. et al. (2016). Combining the Optimized Yeast Cytosine Deaminase Protein Fragment Complementation Assay and an In Vitro Cdk1 Targeting Assay to Study the Regulation of the γ-Tubulin Complex. In: Coutts, A., Weston, L. (eds) Cell Cycle Oscillators. Methods in Molecular Biology, vol 1342. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2957-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2957-3_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2956-6

  • Online ISBN: 978-1-4939-2957-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics