Building a Synthetic Transcriptional Oscillator

  • Matthaeus Schwarz-Schilling
  • Jongmin Kim
  • Christian Cuba
  • Maximilian Weitz
  • Elisa Franco
  • Friedrich C. SimmelEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1342)


Reaction circuits mimicking genetic oscillators can be realized with synthetic, switchable DNA genes (so-called genelets), and two enzymes only, an RNA polymerase and a ribonuclease. The oscillatory behavior of the genelets is driven by the periodic production and degradation of RNA effector molecules. Here, we describe the preparation, assembly, and testing of a synthetic, transcriptional two-node negative-feedback oscillator, whose dynamics can be followed in real-time by fluorescence read-out.

Key words

Gene oscillator Transcription circuit In vitro Nonlinear dynamics Negative-feedback oscillator Genelet circuits 



This work was supported by the Deutsche Forschungsgemeinschaft through the Cluster of Excellence Nanosystems Initiative Munich (NIM) and by NSF grants CMMI-1266402 and CCF-131729.


  1. 1.
    Thomas R (1981) On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Della Dora J, Demongeot J, Lacolle B (eds) Numerical methods in the study of critical phenomena, Springer series in synergetics. Springer, Berlin, pp 180–193CrossRefGoogle Scholar
  2. 2.
    Novak B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9(12):981–991CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Goldbeter A et al (2012) Systems biology of cellular rhythms. FEBS Lett 586(18):2955–2965CrossRefPubMedGoogle Scholar
  4. 4.
    Kim J, White KS, Winfree E (2006) Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol Syst Biol 2:68CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kim J, Winfree E (2011) Synthetic in vitro transcriptional oscillators. Mol Syst Biol 7:465CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Buchler NE, Louis M (2008) Molecular titration and ultrasensitivity in regulatory networks. J Mol Biol 384(5):1106–1119CrossRefPubMedGoogle Scholar
  7. 7.
    Franco E et al (2011) Timing molecular motion and production with a synthetic transcriptional clock. Proc Natl Acad Sci U S A 108(40):E784–E793CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Weitz M et al (2014) Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat Chem 6(4):295–302CrossRefPubMedGoogle Scholar
  9. 9.
    Montagne K et al (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol Syst Biol 7:466CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Padirac A, Fujii T, Rondelez Y (2012) Bottom-up construction of in vitro switchable memories. Proc Natl Acad Sci U S A 109(47):E3212–E3220CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Matthaeus Schwarz-Schilling
    • 1
  • Jongmin Kim
    • 2
  • Christian Cuba
    • 3
  • Maximilian Weitz
    • 1
  • Elisa Franco
    • 3
  • Friedrich C. Simmel
    • 1
    Email author
  1. 1.Systems Biophysics and Bionanotechnology, Physik Department and WSI/ZNNTechnische Universität MünchenGarchingGermany
  2. 2.Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA
  3. 3.Department of Mechanical EngineeringUniversity of California, RiversideRiversideUSA

Personalised recommendations