Methods in Mouse Atherosclerosis pp 101-109

Part of the Methods in Molecular Biology book series (MIMB, volume 1339) | Cite as

Isolation, Culture, and Polarization of Murine Bone Marrow-Derived and Peritoneal Macrophages

Abstract

Macrophages are the most specialized phagocytic cells, and acquire specific phenotypes and functions in response to a variety of external triggers. Culture of bone marrow-derived or peritoneal macrophages from mice represents an exceptionally powerful technique to investigate macrophage phenotypes and functions in response to specific stimuli, resembling as much as possible the conditions observed in various pathophysiological settings. This chapter outlines protocols used to isolate and culture murine bone marrow-derived and peritoneal macrophages. Furthermore, we describe how these macrophages can be “polarized” to obtain specific macrophage subsets with special relevance to atherosclerosis.

Key words

Bone marrow-derived macrophages Peritoneal macrophages Macrophage polarization Atherosclerosis 

References

  1. 1.
    Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Molawi K, Sieweke MH (2013) Transcriptional control of macrophage identity, self-renewal, and function. Adv Immunol 120:269–300CrossRefPubMedGoogle Scholar
  3. 3.
    Andres V, Pello OM, Silvestre-Roig C (2012) Macrophage proliferation and apoptosis in atherosclerosis. Curr Opin Lipidol 23(5):429–438CrossRefPubMedGoogle Scholar
  4. 4.
    Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Hoeksema MA, Stoger JL, de Winther MP (2012) Molecular pathways regulating macrophage polarization: implications for atherosclerosis. Curr Atheroscler Rep 14(3):254–263PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Chinetti-Gbaguidi G, Staels B (2011) Macrophage polarization in metabolic disorders: functions and regulation. Curr Opin Lipidol 22(5):365–372PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Mureddu GF, Brandimarte F, Faggiano P et al (2013) Between risk charts and imaging: how should we stratify cardiovascular risk in clinical practice? Eur Heart J Cardiovasc Imaging 14(5):401–416CrossRefPubMedGoogle Scholar
  8. 8.
    Pello OM, Silvestre-Roig C, De Pizzol M et al (2011) A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology 216(11):1172–1176CrossRefPubMedGoogle Scholar
  9. 9.
    Kadl A, Meher AK, Sharma PR et al (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107(6):737–746PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Gleissner CA (2012) Macrophage phenotype modulation by CXCL4 in atherosclerosis. Front Physiol 3:1PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Boyle JJ (2012) Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage. Curr Opin Lipidol 23(5):453–461CrossRefPubMedGoogle Scholar
  12. 12.
    Marim FM, Silveira TN, Lima DS et al (2010) A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS One 5(12), e15263PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Gundra UM, Girgis NM, Ruckerl D et al (2014) Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood 123(20):e110–e122PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Wang C, Yu X, Cao Q et al (2013) Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunol 14:6PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Ghosn EE, Cassado AA, Govoni GR et al (2010) Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci U S A 107(6):2568–2573PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Patel OV, Wilson WB, Qin Z (2013) Production of LPS-induced inflammatory mediators in murine peritoneal macrophages: neocuproine as a broad inhibitor and ATP7A as a selective regulator. Biometals 26(3):415–425CrossRefPubMedGoogle Scholar
  17. 17.
    Nguyen KD, Qiu Y, Cui X et al (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480(7375):104–108PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Medicine, Centre for Clinical PharmacologyUniversity College LondonLondonUK
  2. 2.Walter Brendel Center for Experimental MedicineLudwig-Maximilians-UniversitätMunichGermany
  3. 3.Department of Hematology, John Goldman Centre for Cellular TherapyHammersmith HospitalLondonUK

Personalised recommendations