Magnetic Resonance Imaging of the Atherosclerotic Mouse Aorta

  • Jesús MateoEmail author
  • Marina Benito
  • Samuel España
  • Javier Sanz
  • Jesús Jiménez-Borreguero
  • Valentín Fuster
  • Jesús Ruiz-Cabello
Part of the Methods in Molecular Biology book series (MIMB, volume 1339)


Plaque development has been extensively studied using magnetic resonance imaging (MRI) in animal models of rapidly progressing atherosclerosis, such as apolipoprotein E-knockout (apoE-KO) mice. Preclinical MRI plays a significant role in the study of experimental atherosclerosis. Currently, MRI is capable of detecting luminal narrowing, plaque size, and morphology with high accuracy and reproducibility, providing reliable measurements of plaque burden. Therefore, MRI offers a noninvasive approach to serially monitor the progression of the disease. Compared with other imaging modalities, MRI appears to have the greatest potential for plaque characterization, through the use of multiple contrast weightings (e.g., T1, T2, and proton density). Here, we illustrate a standard procedure to image the aorta of atherosclerotic mice using noninvasive MRI.

Key words

Magnetic resonance imaging (MRI) Atherosclerosis Plaque Aorta apoE-KO mice 


  1. 1.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874CrossRefPubMedGoogle Scholar
  2. 2.
    Fernández-Ortiz A, Jiménez-Borreguero LJ, Peñalvo JL et al (2013) The Progression and Early detection of Subclinical Atherosclerosis (PESA) study: rationale and design. Am Heart J 166:990–998CrossRefPubMedGoogle Scholar
  3. 3.
    Falk E, Sillesen H, Muntendam P et al (2011) The high-risk plaque initiative: primary prevention of atherothrombotic events in the asymptomatic population. Curr Atheroscler Rep 13:359–366PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Little WC, Applegate RJ (1996) Role of plaque size and degree of stenosis in acute myocardial infarction. Cardiol Clin 14:221–228CrossRefPubMedGoogle Scholar
  5. 5.
    Camici PG, Rimoldi OE, Gaemperli O et al (2012) Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque. Eur Heart J 33:1309–1317CrossRefPubMedGoogle Scholar
  6. 6.
    Corti R, Fuster V (2011) Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J 32:1709–1719CrossRefPubMedGoogle Scholar
  7. 7.
    Chan SK, Jaffer FA, Botnar RM et al (2001) Scan reproducibility of magnetic resonance imaging assessment of aortic atherosclerosis burden. J Cardiovasc Magn Reson 3:331–338CrossRefPubMedGoogle Scholar
  8. 8.
    Zavodni AE, Wasserman BA, McClelland RL et al (2014) Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology 271:381–389PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Helft G, Worthley SG, Fuster V et al (2001) Atherosclerotic aortic component quantification by noninvasive magnetic resonance imaging: an in vivo study in rabbits. J Am Coll Cardiol 37:1149–1154CrossRefPubMedGoogle Scholar
  10. 10.
    Ibanez B, Giannarelli C, Cimmino G et al (2012) Recombinant HDL(Milano) exerts greater anti-inflammatory and plaque stabilizing properties than HDL(wild-type). Atherosclerosis 220:72–77CrossRefPubMedGoogle Scholar
  11. 11.
    Fayad ZA, Fallon JT, Shinnar M et al (1998) Noninvasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 98:1541–1547CrossRefPubMedGoogle Scholar
  12. 12.
    Choudhury RP, Aguinaldo JG, Rong JX et al (2002) Atherosclerotic lesions in genetically modified mice quantified in vivo by non-invasive high-resolution magnetic resonance microscopy. Atherosclerosis 62:315–321CrossRefGoogle Scholar
  13. 13.
    Hockings PD, Roberts T, Galloway GJ et al (2002) Repeated three-dimensional magnetic resonance imaging of atherosclerosis development in innominate arteries of low-density lipoprotein receptor-knockout mice. Circulation 106:1716–1721CrossRefPubMedGoogle Scholar
  14. 14.
    Trogan E, Fayad ZA, Itskovich VV et al (2004) Serial studies of mouse atherosclerosis by in vivo magnetic resonance imaging detect lesion regression after correction of dyslipidemia. Arterioscler Thromb Vasc Biol 24:1714–1719CrossRefPubMedGoogle Scholar
  15. 15.
    Dietrich T, Hucko T, Bourayou R et al (2009) High resolution magnetic resonance imaging in atherosclerotic mice treated with ezetimibe. Int J Cardiovasc Imaging 25:827–836CrossRefPubMedGoogle Scholar
  16. 16.
    Breslow JL (1996) Mouse models of atherosclerosis. Science 272:685–688CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jesús Mateo
    • 1
    Email author
  • Marina Benito
    • 1
    • 2
  • Samuel España
    • 1
  • Javier Sanz
    • 3
  • Jesús Jiménez-Borreguero
    • 1
    • 4
  • Valentín Fuster
    • 1
    • 3
  • Jesús Ruiz-Cabello
    • 1
    • 2
    • 5
  1. 1.Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
  2. 2.CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
  3. 3.The Zena and Michael A. Wiener Cardiovascular Institute/Marie-Josee and Henry R. Kravis Center for Cardiovascular HealthIcahn School of MedicineNew YorkUSA
  4. 4.Hospital Universitario de La PrincesaMadridSpain
  5. 5.Universidad Complutense de MadridMadridSpain

Personalised recommendations