In Vivo 18F-FDG-PET Imaging in Mouse Atherosclerosis

  • Jesús Mateo
  • Izaskun Bilbao
  • Juan José Vaquero
  • Jesús Ruiz-Cabello
  • Samuel EspañaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1339)


Positron emission tomography (PET) is an important technique in cardiovascular research. Vascular inflammation detected by fluorodeoxyglucose (FDG)-PET has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. The use of PET imaging in mouse models of atherosclerosis is challenged by the reduced size of the scanned organs. However, the last generation of dedicated PET scanners has an improved spatial resolution (<1 mm) and increased sensitivity allowing those studies to be performed. Here, we describe a procedure to perform FDG-PET experiments in atherosclerosis mouse models, the required equipment for animal handling and imaging, and the tools and procedures for image analysis and validation of the results.

Key words

Positron emission tomography (PET) Fluorodeoxyglucose (FDG) Computed tomography (CT) Vascular imaging Atherosclerosis Small animal imaging 



JJ Vaquero is partially funded by the Cardiovascular Research Network (RIC, RD12/0042/0057) from the Ministerio de Economía y Competitividad ( The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


  1. 1.
    Buettner C, Rudd JHF, Fayad ZA (2011) Determinants of FDG uptake in atherosclerosis. J Am Coll Cardiol Img 4:1302–1304CrossRefGoogle Scholar
  2. 2.
    Mehta N, Torigian D, Gelfand JM et al (2012) Quantification of atherosclerotic plaque activity and vascular inflammation using [18-F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT). J Vis Exp 63:e3777PubMedGoogle Scholar
  3. 3.
    Rominger A, Saam T, Wolpers S et al (2009) 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 50:1611–1620CrossRefPubMedGoogle Scholar
  4. 4.
    Tahara N, Kai H, Ishibashi M et al (2006) Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 48:1825–1831CrossRefPubMedGoogle Scholar
  5. 5.
    Lee SJ, On YK, Lee EJ et al (2008) Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med 49:1277–1282CrossRefPubMedGoogle Scholar
  6. 6.
    Ogawa M, Ishino S, Mukai T et al (2004) (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 45:1245–1250PubMedGoogle Scholar
  7. 7.
    Hyafil F, Cornily JC, Rudd JHF et al (2009) Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med 50:959–965CrossRefPubMedGoogle Scholar
  8. 8.
    Mateo J, Izquierdo-Garcia D, Badimon JJ et al (2014) Noninvasive assessment of hypoxia in rabbit advanced atherosclerosis using 18F-fluoromisonidazole positron emission tomographic imaging. Circ Cardiovasc Imaging 7(2):312–320PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL et al (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Silvola JMU, Saraste A, Laitinen I et al (2011) Effects of age, diet, and type 2 diabetes on the development and FDG uptake of atherosclerotic plaques. JACC Cardiovasc Imaging 4(12):1294–1301CrossRefPubMedGoogle Scholar
  11. 11.
    Wenning C, Kloth C, Kuhlmann MT et al (2014) Serial F-18-FDG PET/CT distinguishes inflamed from stable plaque phenotypes in shear-stress induced murine atherosclerosis. Atherosclerosis 234(2):276–282CrossRefPubMedGoogle Scholar
  12. 12.
    Hag AMF, Pedersen SF, Christoffersen C et al (2012) (18)F-FDG PET imaging of murine atherosclerosis: association with gene expression of key molecular markers. PLoS One 7(11):e50908PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Orbay H, Hong H, Zhang Y et al (2013) Positron emission tomography imaging of atherosclerosis. Theranostics 3(11):894–902PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Zagorchev L, Oses P, Zhuang ZW et al (2010) Micro computed tomography for vascular exploration. J Angiogenes Res 2:7PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Rudd JHF, Warburton EA, Fryer TD et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105(23):2708–2711CrossRefPubMedGoogle Scholar
  16. 16.
    Rudd JHF, Myers KS, Bansilal S et al (2008) Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 49(6):871–878CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jesús Mateo
    • 1
  • Izaskun Bilbao
    • 1
    • 2
  • Juan José Vaquero
    • 3
    • 4
  • Jesús Ruiz-Cabello
    • 1
    • 3
  • Samuel España
    • 1
    Email author
  1. 1.Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
  2. 2.Universidad Complutense de Madrid and CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
  3. 3.Departamento de Bioingeniería & Ingeniería AeroespacialUniversidad Carlos III MadridMadridSpain
  4. 4.Instituto de Investigación Sanitaria Gregorio MarañónMadridSpain

Personalised recommendations