An Overview of VEGF-Mediated Signal Transduction

  • Ian EvansEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1332)


Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.

Key words

VEGF Signal transduction VEGFR2 Neuropilin Endothelial 



Supported by BHF Programme Grant RG/06/003.


  1. 1.
    Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114:853–865PubMedGoogle Scholar
  2. 2.
    Bates DO, Cui TG, Doughty JM et al (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62:4123–4131PubMedGoogle Scholar
  3. 3.
    Woolard J, Wang WY, Bevan HS et al (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64:7822–7835PubMedGoogle Scholar
  4. 4.
    Bills VL, Salmon AH, Harper SJ et al (2011) Impaired vascular permeability regulation caused by the VEGF(1)(6)(5)b splice variant in pre-eclampsia. BJOG 118:1253–1261PubMedGoogle Scholar
  5. 5.
    Manetti M, Guiducci S, Romano E et al (2011) Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ Res 109:E14–E26PubMedGoogle Scholar
  6. 6.
    Li X, Tjwa M, Van Hove I et al (2008) Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol 28:1614–1620PubMedCentralPubMedGoogle Scholar
  7. 7.
    Lahteenvuo JE, Lahteenvuo MT, Kivela A et al (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119:845–856PubMedGoogle Scholar
  8. 8.
    Aase K, von Euler G, Li X et al (2001) Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation 104:358–364PubMedGoogle Scholar
  9. 9.
    Bellomo D, Headrick JP, Silins GU et al (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86:E29–E35PubMedGoogle Scholar
  10. 10.
    Hagberg CE, Falkevall A, Wang X et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:917–921PubMedGoogle Scholar
  11. 11.
    Hagberg CE, Mehlem A, Falkevall A et al (2012) Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature 490:426–430PubMedGoogle Scholar
  12. 12.
    Lohela M, Bry M, Tammela T et al (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21:154–165PubMedGoogle Scholar
  13. 13.
    Karkkainen MJ, Haiko P, Sainio K et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80PubMedGoogle Scholar
  14. 14.
    Baldwin ME, Halford MM, Roufail S et al (2005) Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25:2441–2449PubMedCentralPubMedGoogle Scholar
  15. 15.
    Jia H, Bagherzadeh A, Bicknell R et al (2004) Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. J Biol Chem 279:36148–36157PubMedGoogle Scholar
  16. 16.
    Achen MG, Stacker SA (2012) Vascular endothelial growth factor-D: signaling mechanisms, biology, and clinical relevance. Growth Factors 30:283–296PubMedGoogle Scholar
  17. 17.
    Migdal M, Huppertz B, Tessler S et al (1998) Neuropilin-1 is a placenta growth factor-2 receptor. J Biol Chem 273:22272–22278PubMedGoogle Scholar
  18. 18.
    Yang W, Ahn H, Hinrichs M et al (2003) Evidence of a novel isoform of placenta growth factor (PlGF-4) expressed in human trophoblast and endothelial cells. J Reprod Immunol 60:53–60PubMedGoogle Scholar
  19. 19.
    Ziche M, Maglione D, Ribatti D et al (1997) Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76:517–531PubMedGoogle Scholar
  20. 20.
    Kolakowski S Jr, Berry MF, Atluri P et al (2006) Placental growth factor provides a novel local angiogenic therapy for ischemic cardiomyopathy. J Card Surg 21:559–564PubMedGoogle Scholar
  21. 21.
    Park JE, Chen HH, Winer J et al (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269:25646–25654PubMedGoogle Scholar
  22. 22.
    Cao Y, Linden P, Shima D et al (1996) In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J Clin Invest 98:2507–2511PubMedCentralPubMedGoogle Scholar
  23. 23.
    Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583PubMedGoogle Scholar
  24. 24.
    Cao Y (2009) Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal 2:re1PubMedGoogle Scholar
  25. 25.
    Fischer C, Mazzone M, Jonckx B et al (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8:942–956PubMedGoogle Scholar
  26. 26.
    Van de Veire S, Stalmans I, Heindryckx F et al (2010) Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 141:178–190PubMedGoogle Scholar
  27. 27.
    Khurana R, Simons M, Martin JF et al (2005) Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 112:1813–1824PubMedGoogle Scholar
  28. 28.
    Zachary IC, Frankel P, Evans IM et al (2009) The role of neuropilins in cell signalling. Biochem Soc Trans 37:1171–1178PubMedGoogle Scholar
  29. 29.
    Waltenberger J, Claesson-Welsh L, Siegbahn A et al (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269:26988–26995PubMedGoogle Scholar
  30. 30.
    de Vries C, Escobedo JA, Ueno H et al (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991PubMedGoogle Scholar
  31. 31.
    Ito N, Wernstedt C, Engstrom U et al (1998) Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J Biol Chem 273:23410–23418PubMedGoogle Scholar
  32. 32.
    Gille H, Kowalski J, Yu L et al (2000) A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration. EMBO J 19:4064–4073PubMedCentralPubMedGoogle Scholar
  33. 33.
    Meyer RD, Mohammadi M, Rahimi N (2006) A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR-1/FLT-1. J Biol Chem 281:867–875PubMedCentralPubMedGoogle Scholar
  34. 34.
    Sawano A, Takahashi T, Yamaguchi S et al (1997) The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. Biochem Biophys Res Commun 238:487–491PubMedGoogle Scholar
  35. 35.
    Landgren E, Schiller P, Cao Y et al (1998) Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 16:359–367PubMedGoogle Scholar
  36. 36.
    Ito N, Huang K, Claesson-Welsh L (2001) Signal transduction by VEGF receptor-1 wild type and mutant proteins. Cell Signal 13:849–854PubMedGoogle Scholar
  37. 37.
    Cai J, Ahmad S, Jiang WG et al (2003) Activation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells. Diabetes 52:2959–2968PubMedGoogle Scholar
  38. 38.
    Clauss M, Weich H, Breier G et al (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271:17629–17634PubMedGoogle Scholar
  39. 39.
    Tchaikovski V, Fellbrich G, Waltenberger J (2008) The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol 28:322–328PubMedGoogle Scholar
  40. 40.
    Fong GH, Rossant J, Gertsenstein M et al (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedGoogle Scholar
  41. 41.
    Hiratsuka S, Minowa O, Kuno J et al (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95:9349–9354PubMedCentralPubMedGoogle Scholar
  42. 42.
    Hiratsuka S, Maru Y, Okada A et al (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61:1207–1213PubMedGoogle Scholar
  43. 43.
    Hayashibara T, Yamada Y, Miyanishi T et al (2001) Vascular endothelial growth factor and cellular chemotaxis: a possible autocrine pathway in adult T-cell leukemia cell invasion. Clin Cancer Res 7:2719–2726PubMedGoogle Scholar
  44. 44.
    Lesslie DP, Summy JM, Parikh NU et al (2006) Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br J Cancer 94:1710–1717PubMedCentralPubMedGoogle Scholar
  45. 45.
    Mutter WP, Karumanchi SA (2008) Molecular mechanisms of preeclampsia. Microvasc Res 75:1–8PubMedCentralPubMedGoogle Scholar
  46. 46.
    Dumont DJ, Jussila L, Taipale J et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949PubMedGoogle Scholar
  47. 47.
    Tammela T, Zarkada G, Wallgard E et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660PubMedGoogle Scholar
  48. 48.
    Tammela T, Zarkada G, Nurmi H et al (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13:1202–1213PubMedCentralPubMedGoogle Scholar
  49. 49.
    Rosenberg RD (1989) Biochemistry of heparin antithrombin interactions, and the physiologic role of this natural anticoagulant mechanism. Am J Med 87:2S–9SPubMedGoogle Scholar
  50. 50.
    Gitay-Goren H, Soker S, Vlodavsky I et al (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267:6093–6098PubMedGoogle Scholar
  51. 51.
    Cohen T, Gitay-Goren H, Sharon R et al (1995) VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J Biol Chem 270:11322–11326PubMedGoogle Scholar
  52. 52.
    Krilleke D, Ng YS, Shima DT (2009) The heparin-binding domain confers diverse functions of VEGF-A in development and disease: a structure-function study. Biochem Soc Trans 37:1201–1206PubMedGoogle Scholar
  53. 53.
    Grunewald FS, Prota AE, Giese A et al (2010) Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. Biochim Biophys Acta 1804:567–580PubMedGoogle Scholar
  54. 54.
    Gengrinovitch S, Berman B, David G et al (1999) Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 274:10816–10822PubMedGoogle Scholar
  55. 55.
    Jakobsson L, Bentley K, Gerhardt H (2009) VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 37:1233–1236PubMedGoogle Scholar
  56. 56.
    Le Jan S, Hayashi M, Kasza Z et al (2012) Functional overlap between chondroitin and heparan sulfate proteoglycans during VEGF-induced sprouting angiogenesis. Arterioscler Thromb Vasc Biol 32:1255–1263PubMedCentralPubMedGoogle Scholar
  57. 57.
    Pellet-Many C, Frankel P, Jia H et al (2008) Neuropilins: structure, function and role in disease. Biochem J 411:211–226PubMedGoogle Scholar
  58. 58.
    Antipenko A, Himanen JP, van Leyen K et al (2003) Structure of the semaphorin-3A receptor binding module. Neuron 39:589–598PubMedGoogle Scholar
  59. 59.
    Rohm B, Ottemeyer A, Lohrum M et al (2000) Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech Dev 93:95–104PubMedGoogle Scholar
  60. 60.
    West DC, Rees CG, Duchesne L et al (2005) Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem 280:13457–13464PubMedGoogle Scholar
  61. 61.
    Banerjee S, Sengupta K, Dhar K et al (2006) Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog 45:871–880PubMedGoogle Scholar
  62. 62.
    Hu B, Guo P, Bar-Joseph I et al (2007) Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene 26:5577–5586PubMedCentralPubMedGoogle Scholar
  63. 63.
    Matsushita A, Gotze T, Korc M (2007) Hepatocyte growth factor-mediated cell invasion in pancreatic cancer cells is dependent on neuropilin-1. Cancer Res 67:10309–10316PubMedGoogle Scholar
  64. 64.
    Frankel P, Pellet-Many C, Lehtolainen P et al (2008) Chondroitin sulphate-modified neuropilin 1 is expressed in human tumour cells and modulates 3D invasion in the U87MG human glioblastoma cell line through a p130Cas-mediated pathway. EMBO Rep 9:983–989PubMedCentralPubMedGoogle Scholar
  65. 65.
    Glinka Y, Prud’homme GJ (2008) Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 84:302–310PubMedCentralPubMedGoogle Scholar
  66. 66.
    Sulpice E, Plouet J, Berge M et al (2008) Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood 111:2036–2045PubMedGoogle Scholar
  67. 67.
    Pellet-Many C, Frankel P, Evans IM et al (2011) Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. Biochem J 435:609–618PubMedCentralPubMedGoogle Scholar
  68. 68.
    Tordjman R, Lepelletier Y, Lemarchandel V et al (2002) A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat Immunol 3:477–482PubMedGoogle Scholar
  69. 69.
    Lepelletier Y, Smaniotto S, Hadj-Slimane R et al (2007) Control of human thymocyte migration by Neuropilin-1/Semaphorin-3A-mediated interactions. Proc Natl Acad Sci U S A 104:5545–5550PubMedCentralPubMedGoogle Scholar
  70. 70.
    Kitsukawa T, Shimizu M, Sanbo M et al (1997) Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19:995–1005PubMedGoogle Scholar
  71. 71.
    Kawasaki T, Kitsukawa T, Bekku Y et al (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902PubMedGoogle Scholar
  72. 72.
    Polleux F, Morrow T, Ghosh A (2000) Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:567–573PubMedGoogle Scholar
  73. 73.
    Gu C, Rodriguez ER, Reimert DV et al (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5:45–57PubMedCentralPubMedGoogle Scholar
  74. 74.
    Fantin A, Herzog B, Mahmoud M et al (2014) Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141:556–562PubMedCentralPubMedGoogle Scholar
  75. 75.
    Gelfand MV, Hagan N, Tata A et al (2014) Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. Elife 3:e03720PubMedCentralPubMedGoogle Scholar
  76. 76.
    Chen H, Bagri A, Zupicich JA et al (2000) Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25:43–56PubMedGoogle Scholar
  77. 77.
    Yuan L, Moyon D, Pardanaud L et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806PubMedGoogle Scholar
  78. 78.
    Pan Q, Chathery Y, Wu Y et al (2007) Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem 282:24049–24056PubMedGoogle Scholar
  79. 79.
    Whitaker GB, Limberg BJ, Rosenbaum JS (2001) Vascular endothelial growth factor receptor-2 and neuropilin-1 form a receptor complex that is responsible for the differential signaling potency of VEGF(165) and VEGF(121). J Biol Chem 276:25520–25531PubMedGoogle Scholar
  80. 80.
    Shraga-Heled N, Kessler O, Prahst C et al (2007) Neuropilin-1 and neuropilin-2 enhance VEGF121 stimulated signal transduction by the VEGFR-2 receptor. FASEB J 21:915–926PubMedGoogle Scholar
  81. 81.
    Soker S, Miao HQ, Nomi M et al (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 85:357–368PubMedGoogle Scholar
  82. 82.
    Herzog B, Pellet-Many C, Britton G et al (2011) VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell 22:2766–2776PubMedCentralPubMedGoogle Scholar
  83. 83.
    Prahst C, Heroult M, Lanahan AA et al (2008) Neuropilin-1-VEGFR-2 complexing requires the PDZ-binding domain of neuropilin-1. J Biol Chem 283:25110–25114PubMedCentralPubMedGoogle Scholar
  84. 84.
    Evans IM, Yamaji M, Britton G et al (2011) Neuropilin-1 signaling through p130Cas tyrosine phosphorylation is essential for growth factor-dependent migration of glioma and endothelial cells. Mol Cell Biol 31:1174–1185PubMedCentralPubMedGoogle Scholar
  85. 85.
    Jia H, Bagherzadeh A, Hartzoulakis B et al (2006) Characterization of a bicyclic peptide neuropilin-1 (NP-1) antagonist (EG3287) reveals importance of vascular endothelial growth factor exon 8 for NP-1 binding and role of NP-1 in KDR signaling. J Biol Chem 281:13493–13502PubMedGoogle Scholar
  86. 86.
    Pan Q, Chanthery Y, Liang WC et al (2007) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11:53–67PubMedGoogle Scholar
  87. 87.
    Fantin A, Schwarz Q, Davidson K et al (2011) The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development 138:4185–4191PubMedCentralPubMedGoogle Scholar
  88. 88.
    Lanahan A, Zhang X, Fantin A et al (2013) The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 25:156–168PubMedCentralPubMedGoogle Scholar
  89. 89.
    Murga M, Fernandez-Capetillo O, Tosato G (2005) Neuropilin-1 regulates attachment in human endothelial cells independently of vascular endothelial growth factor receptor-2. Blood 105:1992–1999PubMedGoogle Scholar
  90. 90.
    Raimondi C, Fantin A, Lampropoulou A et al (2014) Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1-dependent ABL1 activation in endothelial cells. J Exp Med 211:1167–1183PubMedCentralPubMedGoogle Scholar
  91. 91.
    Shimizu M, Murakami Y, Suto F et al (2000) Determination of cell adhesion sites of neuropilin-1. J Cell Biol 148:1283–1293PubMedCentralPubMedGoogle Scholar
  92. 92.
    Shintani Y, Takashima S, Kato H (2009) Extracellular protein kinase CK2 is a novel associating protein of neuropilin-1. Biochem Biophys Res Commun 385:618–623PubMedGoogle Scholar
  93. 93.
    Valdembri D, Caswell PT, Anderson KI et al (2009) Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol 7:e25PubMedGoogle Scholar
  94. 94.
    Cai H, Reed RR (1999) Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. J Neurosci 19:6519–6527PubMedGoogle Scholar
  95. 95.
    Wang L, Mukhopadhyay D, Xu X (2006) C terminus of RGS-GAIP-interacting protein conveys neuropilin-1-mediated signaling during angiogenesis. FASEB J 20:1513–1515PubMedGoogle Scholar
  96. 96.
    Abramow-Newerly M, Roy AA, Nunn C et al (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18:579–591PubMedGoogle Scholar
  97. 97.
    Liu M, Horowitz A (2006) A PDZ-binding motif as a critical determinant of Rho guanine exchange factor function and cell phenotype. Mol Biol Cell 17:1880–1887PubMedCentralPubMedGoogle Scholar
  98. 98.
    Chittenden TW, Claes F, Lanahan AA et al (2006) Selective regulation of arterial branching morphogenesis by synectin. Dev Cell 10:783–795PubMedGoogle Scholar
  99. 99.
    Naccache SN, Hasson T, Horowitz A (2006) Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles. Proc Natl Acad Sci U S A 103:12735–12740PubMedCentralPubMedGoogle Scholar
  100. 100.
    Lanahan AA, Hermans K, Claes F et al (2010) VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell 18:713–724PubMedCentralPubMedGoogle Scholar
  101. 101.
    Seerapu HR, Borthakur S, Kong N et al (2013) The cytoplasmic domain of neuropilin-1 regulates focal adhesion turnover. FEBS Lett 587:3392–3399PubMedGoogle Scholar
  102. 102.
    Gagnon ML, Bielenberg DR, Gechtman Z et al (2000) Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: in vivo expression and antitumor activity. Proc Natl Acad Sci U S A 97:2573–2578PubMedCentralPubMedGoogle Scholar
  103. 103.
    Cackowski FC, Xu L, Hu B (2004) Identification of two novel alternatively spliced Neuropilin-1 isoforms. Genomics 84:82–94PubMedCentralPubMedGoogle Scholar
  104. 104.
    Yamada Y, Takakura N, Yasue H et al (2001) Exogenous clustered neuropilin 1 enhances vasculogenesis and angiogenesis. Blood 97:1671–1678PubMedGoogle Scholar
  105. 105.
    Takahashi T, Yamaguchi S, Chida K et al (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20:2768–2778PubMedCentralPubMedGoogle Scholar
  106. 106.
    Holmqvist K, Cross MJ, Rolny C et al (2004) The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279:22267–22275PubMedGoogle Scholar
  107. 107.
    Igarashi K, Shigeta K, Isohara T et al (1998) Sck interacts with KDR and Flt-1 via its SH2 domain. Biochem Biophys Res Commun 251:77–82PubMedGoogle Scholar
  108. 108.
    Warner AJ, Lopez-Dee J, Knight EL et al (2000) The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells. Biochem J 347:501–509PubMedCentralPubMedGoogle Scholar
  109. 109.
    Ratcliffe KE, Tao Q, Yavuz B et al (2002) Sck is expressed in endothelial cells and participates in vascular endothelial growth factor-induced signaling. Oncogene 21:6307–6316PubMedGoogle Scholar
  110. 110.
    Sakurai Y, Ohgimoto K, Kataoka Y et al (2005) Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci U S A 102:1076–1081PubMedCentralPubMedGoogle Scholar
  111. 111.
    Wu LW, Mayo LD, Dunbar JD et al (2000) VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor. J Biol Chem 275(9):6059–6062PubMedGoogle Scholar
  112. 112.
    Matsumoto T, Bohman S, Dixelius J et al (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24:2342–2353PubMedCentralPubMedGoogle Scholar
  113. 113.
    Meyer RD, Sacks DB, Rahimi N (2008) IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PLoS One 3:e3848PubMedCentralPubMedGoogle Scholar
  114. 114.
    Dougher M, Terman BI (1999) Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 18:1619–1627PubMedGoogle Scholar
  115. 115.
    Lamalice L, Houle F, Jourdan G et al (2004) Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23:434–445PubMedGoogle Scholar
  116. 116.
    Lamalice L, Houle F, Huot J (2006) Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J Biol Chem 281:34009–34020PubMedGoogle Scholar
  117. 117.
    Kroll J, Waltenberger J (1997) The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 272:32521–32527PubMedGoogle Scholar
  118. 118.
    Guo D, Jia Q, Song HY et al (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 270:6729–6733PubMedGoogle Scholar
  119. 119.
    Huang L, Sankar S, Lin C et al (1999) HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity. J Biol Chem 274:38183–38188PubMedGoogle Scholar
  120. 120.
    Guo DQ, Wu LW, Dunbar JD et al (2000) Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. J Biol Chem 275:11216–11221PubMedGoogle Scholar
  121. 121.
    Bruns AF, Bao L, Walker JH et al (2009) VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis. Biochem Soc Trans 37:1193–1197PubMedGoogle Scholar
  122. 122.
    Scott A, Mellor H (2009) VEGF receptor trafficking in angiogenesis. Biochem Soc Trans 37:1184–1188PubMedGoogle Scholar
  123. 123.
    Ewan LC, Jopling HM, Jia H et al (2006) Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 7:1270–1282PubMedGoogle Scholar
  124. 124.
    Gampel A, Moss L, Jones MC et al (2006) VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108:2624–2631PubMedGoogle Scholar
  125. 125.
    Carmeliet P, Lampugnani MG, Moons L et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157PubMedGoogle Scholar
  126. 126.
    Calera MR, Venkatakrishnan A, Kazlauskas A (2004) VE-cadherin increases the half-life of VEGF receptor 2. Exp Cell Res 300:248–256PubMedGoogle Scholar
  127. 127.
    Lampugnani MG, Orsenigo F, Gagliani MC et al (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174:593–604PubMedCentralPubMedGoogle Scholar
  128. 128.
    Holmes DI, Zachary IC (2008) Vascular endothelial growth factor regulates stanniocalcin-1 expression via neuropilin-1-dependent regulation of KDR and synergism with fibroblast growth factor-2. Cell Signal 20:569–579PubMedGoogle Scholar
  129. 129.
    Labrecque L, Royal I, Surprenant DS et al (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 14:334–347PubMedCentralPubMedGoogle Scholar
  130. 130.
    Ikeda S, Ushio-Fukai M, Zuo L et al (2005) Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 96:467–475PubMedGoogle Scholar
  131. 131.
    Jopling HM, Odell AF, Hooper NM et al (2009) Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells. Arterioscler Thromb Vasc Biol 29:1119–1124PubMedCentralPubMedGoogle Scholar
  132. 132.
    Bruns AF, Herbert SP, Odell AF et al (2010) Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic 11:161–174PubMedGoogle Scholar
  133. 133.
    Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16:400–406PubMedGoogle Scholar
  134. 134.
    Dayanir V, Meyer RD, Lashkari K et al (2001) Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J Biol Chem 276:17686–17692PubMedGoogle Scholar
  135. 135.
    Thakker GD, Hajjar DP, Muller WA et al (1999) The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling. J Biol Chem 274:10002–10007PubMedGoogle Scholar
  136. 136.
    Coffer PJ, Jin J, Woodgett JR (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335:1–13PubMedCentralPubMedGoogle Scholar
  137. 137.
    Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90:1243–1250PubMedGoogle Scholar
  138. 138.
    Harada H, Grant S (2003) Apoptosis regulators. Rev Clin Exp Hematol 7:117–138PubMedGoogle Scholar
  139. 139.
    Gerber HP, McMurtrey A, Kowalski J et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273:30336–30343PubMedGoogle Scholar
  140. 140.
    Tran J, Rak J, Sheehan C et al (1999) Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 264:781–788PubMedGoogle Scholar
  141. 141.
    Dimmeler S, Fleming I, Fisslthaler B et al (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605PubMedGoogle Scholar
  142. 142.
    Fulton D, Gratton JP, McCabe TJ et al (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601PubMedCentralPubMedGoogle Scholar
  143. 143.
    Wu KK (2002) Regulation of endothelial nitric oxide synthase activity and gene expression. Ann N Y Acad Sci 962:122–130PubMedGoogle Scholar
  144. 144.
    Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12PubMedGoogle Scholar
  145. 145.
    Zachary I, Gliki G (2001) Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49:568–581PubMedGoogle Scholar
  146. 146.
    Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777PubMedCentralPubMedGoogle Scholar
  147. 147.
    Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88:4651–4655PubMedCentralPubMedGoogle Scholar
  148. 148.
    De Caterina R, Libby P, Peng HB et al (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68PubMedCentralPubMedGoogle Scholar
  149. 149.
    Zachary I, Mathur A, Yla-Herttuala S et al (2000) Vascular protection: a novel nonangiogenic cardiovascular role for vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 20:1512–1520PubMedGoogle Scholar
  150. 150.
    Noiri E, Hu Y, Bahou WF et al (1997) Permissive role of nitric oxide in endothelin-induced migration of endothelial cells. J Biol Chem 272:1747–1752PubMedGoogle Scholar
  151. 151.
    Goligorsky MS, Abedi H, Noiri E et al (1999) Nitric oxide modulation of focal adhesions in endothelial cells. Am J Physiol 276:C1271–C1281PubMedGoogle Scholar
  152. 152.
    Dimmeler S, Dernbach E, Zeiher AM (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 477:258–262PubMedGoogle Scholar
  153. 153.
    Fiedler LR, Wojciak-Stothard B (2009) The DDAH/ADMA pathway in the control of endothelial cell migration and angiogenesis. Biochem Soc Trans 37:1243–1247PubMedGoogle Scholar
  154. 154.
    Fiedler LR, Bachetti T, Leiper J et al (2009) The ADMA/DDAH pathway regulates VEGF-mediated angiogenesis. Arterioscler Thromb Vasc Biol 29:2117–2124PubMedGoogle Scholar
  155. 155.
    Wojciak-Stothard B, Torondel B, Zhao L et al (2009) Modulation of Rac1 activity by ADMA/DDAH regulates pulmonary endothelial barrier function. Mol Biol Cell 20:33–42PubMedCentralPubMedGoogle Scholar
  156. 156.
    Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11:471–477PubMedGoogle Scholar
  157. 157.
    Fiedler LR (2009) Rac1 regulates cardiovascular development and postnatal function of endothelium. Cell Adh Migr 3:143–145PubMedCentralPubMedGoogle Scholar
  158. 158.
    Sauzeau V, Rolli-Derkinderen M, Marionneau C et al (2003) RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J Biol Chem 278:9472–9480PubMedGoogle Scholar
  159. 159.
    Shiga N, Hirano K, Hirano M et al (2005) Long-term inhibition of RhoA attenuates vascular contractility by enhancing endothelial NO production in an intact rabbit mesenteric artery. Circ Res 96:1014–1021PubMedGoogle Scholar
  160. 160.
    Cross DA, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789PubMedGoogle Scholar
  161. 161.
    Brennan P, Babbage JW, Burgering BM et al (1997) Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7:679–689PubMedGoogle Scholar
  162. 162.
    Wang D, Sul HS (1998) Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt. J Biol Chem 273:25420–25426PubMedGoogle Scholar
  163. 163.
    Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267PubMedGoogle Scholar
  164. 164.
    Shah OJ, Anthony JC, Kimball SR et al (2000) 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279:E715–E729PubMedGoogle Scholar
  165. 165.
    Rossig L, Badorff C, Holzmann Y et al (2002) Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. J Biol Chem 277:9684–9689PubMedGoogle Scholar
  166. 166.
    Gong C, Stoletov KV, Terman BI (2004) VEGF treatment induces signaling pathways that regulate both actin polymerization and depolymerization. Angiogenesis 7:313–321PubMedGoogle Scholar
  167. 167.
    Meyer RD, Latz C, Rahimi N (2003) Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells. J Biol Chem 278:16347–16355PubMedCentralPubMedGoogle Scholar
  168. 168.
    Rahimi N (2009) A role for protein ubiquitination in VEGFR-2 signalling and angiogenesis. Biochem Soc Trans 37:1189–1192PubMedGoogle Scholar
  169. 169.
    Kim MJ, Kim E, Ryu SH et al (2000) The mechanism of phospholipase C-gamma1 regulation. Exp Mol Med 32:101–109PubMedGoogle Scholar
  170. 170.
    Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87:682–685PubMedCentralPubMedGoogle Scholar
  171. 171.
    Fleming I, Busse R (1999) Signal transduction of eNOS activation. Cardiovasc Res 43:532–541PubMedGoogle Scholar
  172. 172.
    Higaki T, Sawada S, Kono Y et al (1999) A role of protein kinase C in the regulation of cytosolic phospholipase A(2) in bradykinin-induced PGI(2) synthesis by human vascular endothelial cells. Microvasc Res 58:144–155PubMedGoogle Scholar
  173. 173.
    Hirabayashi T, Kume K, Hirose K et al (1999) Critical duration of intracellular Ca2+ response required for continuous translocation and activation of cytosolic phospholipase A2. J Biol Chem 274:5163–5169PubMedGoogle Scholar
  174. 174.
    Evans JH, Spencer DM, Zweifach A et al (2001) Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. J Biol Chem 276:30150–30160PubMedGoogle Scholar
  175. 175.
    Gliki G, Abu-Ghazaleh R, Jezequel S et al (2001) Vascular endothelial growth factor-induced prostacyclin production is mediated by a protein kinase C (PKC)-dependent activation of extracellular signal-regulated protein kinases 1 and 2 involving PKC-delta and by mobilization of intracellular Ca2+. Biochem J 353:503–512PubMedCentralPubMedGoogle Scholar
  176. 176.
    Wheeler-Jones CP (2008) Regulation of endothelial prostacyclin synthesis by protease-activated receptors: mechanisms and significance. Pharmacol Rep 60:109–118PubMedGoogle Scholar
  177. 177.
    Hernandez GL, Volpert OV, Iniguez MA et al (2001) Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 193:607–620PubMedCentralPubMedGoogle Scholar
  178. 178.
    Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182PubMedGoogle Scholar
  179. 179.
    Reyland ME (2009) Protein kinase C isoforms: multi-functional regulators of cell life and death. Front Biosci 14:2386–2399Google Scholar
  180. 180.
    Yamamura S, Nelson PR, Kent KC (1996) Role of protein kinase C in attachment, spreading, and migration of human endothelial cells. J Surg Res 63:349–354PubMedGoogle Scholar
  181. 181.
    Wang A, Nomura M, Patan S et al (2002) Inhibition of protein kinase Calpha prevents endothelial cell migration and vascular tube formation in vitro and myocardial neovascularization in vivo. Circ Res 90:609–616PubMedGoogle Scholar
  182. 182.
    Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R et al (1997) Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett 420:28–32PubMedGoogle Scholar
  183. 183.
    Davis RJ (1995) Transcriptional regulation by MAP kinases. Mol Reprod Dev 42:459–467PubMedGoogle Scholar
  184. 184.
    Pende M, Um SH, Mieulet V et al (2004) S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24:3112–3124PubMedCentralPubMedGoogle Scholar
  185. 185.
    Evans IM, Zachary IC (2011) Protein kinase D in vascular biology and angiogenesis. IUBMB Life 63:258–263PubMedGoogle Scholar
  186. 186.
    Evans IM, Britton G, Zachary IC (2008) Vascular endothelial growth factor induces heat shock protein (HSP) 27 serine 82 phosphorylation and endothelial tubulogenesis via protein kinase D and independent of p38 kinase. Cell Signal 20:1375–1384PubMedGoogle Scholar
  187. 187.
    Qin L, Zeng H, Zhao D (2006) Requirement of protein kinase D tyrosine phosphorylation for VEGF-A165-induced angiogenesis through its interaction and regulation of phospholipase Cgamma phosphorylation. J Biol Chem 281:32550–32558PubMedGoogle Scholar
  188. 188.
    Ha CH, Wang W, Jhun BS et al (2008) Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. J Biol Chem 283:14590–14599PubMedCentralPubMedGoogle Scholar
  189. 189.
    Wang S, Li X, Parra M, Verdin E et al (2008) Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc Natl Acad Sci U S A 105:7738–7743PubMedCentralPubMedGoogle Scholar
  190. 190.
    Evans IM, Bagherzadeh A, Charles M et al (2010) Characterization of the biological effects of a novel protein kinase D inhibitor in endothelial cells. Biochem J 429:565–572PubMedCentralPubMedGoogle Scholar
  191. 191.
    Rousseau S, Houle F, Huot J (2000) Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med 10:321–327PubMedGoogle Scholar
  192. 192.
    Lambert H, Charette SJ, Bernier AF et al (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274:9378–9385PubMedGoogle Scholar
  193. 193.
    Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 66:3289–3307PubMedGoogle Scholar
  194. 194.
    Vega RB, Harrison BC, Meadows E et al (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24:8374–8385PubMedCentralPubMedGoogle Scholar
  195. 195.
    Liu D, Evans I, Britton G et al (2008) The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis. Oncogene 27:2989–2998PubMedGoogle Scholar
  196. 196.
    Suehiro J, Hamakubo T, Kodama T et al (2010) Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood 115:2520–2532PubMedCentralPubMedGoogle Scholar
  197. 197.
    Rousseau S, Houle F, Landry J et al (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–2177PubMedGoogle Scholar
  198. 198.
    Kobayashi M, Nishita M, Mishima T et al (2006) MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J 25:713–726PubMedCentralPubMedGoogle Scholar
  199. 199.
    Rafiee P, Heidemann J, Ogawa H et al (2004) Cyclosporin A differentially inhibits multiple steps in VEGF induced angiogenesis in human microvascular endothelial cells through altered intracellular signaling. Cell Commun Signal 2:3PubMedCentralPubMedGoogle Scholar
  200. 200.
    McMullen ME, Bryant PW, Glembotski CC et al (2005) Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J Biol Chem 280:20995–21003PubMedGoogle Scholar
  201. 201.
    Cote MC, Lavoie JR, Houle F et al (2010) Regulation of vascular endothelial growth factor-induced endothelial cell migration by LIM kinase 1-mediated phosphorylation of annexin 1. J Biol Chem 285:8013–8021PubMedCentralPubMedGoogle Scholar
  202. 202.
    Mudgett JS, Ding J, Guh-Siesel L et al (2000) Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 97:10454–10459PubMedCentralPubMedGoogle Scholar
  203. 203.
    Adams RH, Porras A, Alonso G et al (2000) Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6:109–116PubMedGoogle Scholar
  204. 204.
    Beardmore VA, Hinton HJ, Eftychi C et al (2005) Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25:10454–10464PubMedCentralPubMedGoogle Scholar
  205. 205.
    Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18PubMedGoogle Scholar
  206. 206.
    Roberts OL, Holmes K, Muller J et al (2009) ERK5 and the regulation of endothelial cell function. Biochem Soc Trans 37:1254–1259PubMedGoogle Scholar
  207. 207.
    Regan CP, Li W, Boucher DM et al (2002) Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci U S A 99:9248–9253PubMedCentralPubMedGoogle Scholar
  208. 208.
    Sohn SJ, Sarvis BK, Cado D et al (2002) ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem 277:43344–43351PubMedGoogle Scholar
  209. 209.
    Yan L, Carr J, Ashby PR et al (2003) Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol 3:11PubMedCentralPubMedGoogle Scholar
  210. 210.
    Hayashi M, Kim SW, Imanaka-Yoshida K et al (2004) Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 113:1138–1148PubMedCentralPubMedGoogle Scholar
  211. 211.
    Kato Y, Kravchenko VV, Tapping RI et al (1997) BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J 16:7054–7066PubMedCentralPubMedGoogle Scholar
  212. 212.
    English JM, Pearson G, Baer R et al (1998) Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases. J Biol Chem 273:3854–3860PubMedGoogle Scholar
  213. 213.
    Yang CC, Ornatsky OI, McDermott JC et al (1998) Interaction of myocyte enhancer factor 2 (MEF2) with a mitogen-activated protein kinase, ERK5/BMK1. Nucleic Acids Res 26:4771–4777PubMedCentralPubMedGoogle Scholar
  214. 214.
    Kamakura S, Moriguchi T, Nishida E (1999) Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274:26563–26571PubMedGoogle Scholar
  215. 215.
    Kato Y, Chao TH, Hayashi M et al (2000) Role of BMK1 in regulation of growth factor-induced cellular responses. Immunol Res 21:233–237PubMedGoogle Scholar
  216. 216.
    Watson FL, Heerssen HM, Bhattacharyya A et al (2001) Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 4:981–988PubMedGoogle Scholar
  217. 217.
    Lin Q, Schwarz J, Bucana C et al (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407PubMedCentralPubMedGoogle Scholar
  218. 218.
    Lin Q, Lu J, Yanagisawa H et al (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574PubMedGoogle Scholar
  219. 219.
    Bi W, Drake CJ, Schwarz JJ (1999) The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev Biol 211:255–267PubMedGoogle Scholar
  220. 220.
    Pi X, Yan C, Berk BC (2004) Big mitogen-activated protein kinase (BMK1)/ERK5 protects endothelial cells from apoptosis. Circ Res 94:362–369PubMedGoogle Scholar
  221. 221.
    Edwards DC, Sanders LC, Bokoch GM et al (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1:253–259PubMedGoogle Scholar
  222. 222.
    Stoletov KV, Gong C, Terman BI (2004) Nck and Crk mediate distinct VEGF-induced signaling pathways that serve overlapping functions in focal adhesion turnover and integrin activation. Exp Cell Res 295:258–268PubMedGoogle Scholar
  223. 223.
    Duval M, Le Boeuf F, Huot J et al (2007) Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 18:4659–4668PubMedCentralPubMedGoogle Scholar
  224. 224.
    Le Boeuf F, Houle F, Huot J (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279:39175–39185PubMedGoogle Scholar
  225. 225.
    Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416PubMedGoogle Scholar
  226. 226.
    Alavi A, Hood JD, Frausto R et al (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301:94–96PubMedGoogle Scholar
  227. 227.
    Tzima E, Irani-Tehrani M, Kiosses WB et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431PubMedGoogle Scholar
  228. 228.
    Soldi R, Mitola S, Strasly M et al (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892PubMedCentralPubMedGoogle Scholar
  229. 229.
    Abedi H, Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272:15442–15451PubMedGoogle Scholar
  230. 230.
    Olsson AK, Dimberg A, Kreuger J et al (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371PubMedGoogle Scholar
  231. 231.
    Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794PubMedGoogle Scholar
  232. 232.
    Le Boeuf F, Houle F, Sussman M et al (2006) Phosphorylation of focal adhesion kinase (FAK) on Ser732 is induced by rho-dependent kinase and is essential for proline-rich tyrosine kinase-2-mediated phosphorylation of FAK on Tyr407 in response to vascular endothelial growth factor. Mol Biol Cell 17:3508–3520PubMedCentralPubMedGoogle Scholar
  233. 233.
    Avraham HK, Lee TH, Koh Y et al (2003) Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J Biol Chem 278:36661–36668PubMedGoogle Scholar
  234. 234.
    Hodivala-Dilke KM, McHugh KP, Tsakiris DA et al (1999) Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103:229–238PubMedCentralPubMedGoogle Scholar
  235. 235.
    Reynolds LE, Wyder L, Lively JC et al (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34PubMedGoogle Scholar
  236. 236.
    Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–1105PubMedGoogle Scholar
  237. 237.
    Senger DR, Claffey KP, Benes JE et al (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci U S A 94:13612–13617PubMedCentralPubMedGoogle Scholar
  238. 238.
    Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21:2511–2524PubMedGoogle Scholar
  239. 239.
    Hrabe de Angelis M, McIntyre J 2nd, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386:717–721PubMedGoogle Scholar
  240. 240.
    Domenga V, Fardoux P, Lacombe P et al (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18:2730–2735PubMedCentralPubMedGoogle Scholar
  241. 241.
    Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177PubMedCentralPubMedGoogle Scholar
  242. 242.
    Ridgway J, Zhang G, Wu Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444:1083–1087PubMedGoogle Scholar
  243. 243.
    Williams CK, Li JL, Murga M et al (2006) Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107:931–939PubMedCentralPubMedGoogle Scholar
  244. 244.
    Harrington LS, Sainson RC, Williams CK et al (2008) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res 75:144–154PubMedGoogle Scholar
  245. 245.
    Funahashi Y, Shawber CJ, Vorontchikhina M et al (2010) Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res 2:3PubMedCentralPubMedGoogle Scholar
  246. 246.
    Benedito R, Roca C, Sorensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135PubMedGoogle Scholar
  247. 247.
    Jakobsson L, Franco CA, Bentley K et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953PubMedGoogle Scholar
  248. 248.
    Hellstrom M, Phng LK, Hofmann JJ et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780PubMedGoogle Scholar
  249. 249.
    Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445:781–784PubMedGoogle Scholar
  250. 250.
    Ren B, Deng Y, Mukhopadhyay A et al (2010) ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Invest 120:1217–1228PubMedCentralPubMedGoogle Scholar
  251. 251.
    Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744PubMedGoogle Scholar
  252. 252.
    Yang S, Toy K, Ingle G et al (2002) Vascular endothelial growth factor-induced genes in human umbilical vein endothelial cells: relative roles of KDR and Flt-1 receptors. Arterioscler Thromb Vasc Biol 22:1797–1803PubMedGoogle Scholar
  253. 253.
    Liu D, Jia H, Holmes DI et al (2003) Vascular endothelial growth factor-regulated gene expression in endothelial cells: KDR-mediated induction of Egr3 and the related nuclear receptors Nur77, Nurr1, and Nor1. Arterioscler Thromb Vasc Biol 23:2002–2007PubMedGoogle Scholar
  254. 254.
    Kahn J, Mehraban F, Ingle G et al (2000) Gene expression profiling in an in vitro model of angiogenesis. Am J Pathol 156:1887–1900PubMedCentralPubMedGoogle Scholar
  255. 255.
    Glienke J, Schmitt AO, Pilarsky C et al (2000) Differential gene expression by endothelial cells in distinct angiogenic states. Eur J Biochem 267:2820–2830PubMedGoogle Scholar
  256. 256.
    Bell SE, Mavila A, Salazar R et al (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114:2755–2773PubMedGoogle Scholar
  257. 257.
    Sheikh-Hamad D (2010) Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways: new paradigms for regulation of macrophages and endothelium. Am J Physiol Renal Physiol 298:F248–F254PubMedCentralPubMedGoogle Scholar
  258. 258.
    Chakraborty A, Brooks H, Zhang P et al (2007) Stanniocalcin-1 regulates endothelial gene expression and modulates transendothelial migration of leukocytes. Am J Physiol Renal Physiol 292:F895–F904PubMedGoogle Scholar
  259. 259.
    Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703PubMedCentralPubMedGoogle Scholar
  260. 260.
    Gerber HP, Malik AK, Solar GP et al (2002) VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417:954–958PubMedGoogle Scholar
  261. 261.
    Brusselmans K, Bono F, Collen D et al (2005) A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem 280:3493–3499PubMedGoogle Scholar
  262. 262.
    Lee TH, Seng S, Sekine M et al (2007) Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 4:e186PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Cardiovascular Biology and Medicine, Division of MedicineUniversity College LondonLondonUK

Personalised recommendations