Precise Identification of DNA-Binding Proteins Genomic Location by Exonuclease Coupled Chromatin Immunoprecipitation (ChIP-exo)

  • Dominick Matteau
  • Sébastien RodrigueEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1334)


DNA-binding proteins play a crucial role in all living organisms by interacting with various DNA sequences across the genome. While several methods have been used to study the interaction between DNA and proteins in vitro, chromatin immunoprecipitation followed by sequencing (ChIP-seq) has become the standard technique for identifying the genome-wide location of DNA-binding proteins in vivo. However, the resolution of standard ChIP-seq methodology is limited by the DNA fragmentation process and presence of contaminating DNA. A significant improvement of the ChIP-seq technique results from the addition of an exonuclease treatment during the immunoprecipitation step (ChIP-exo) that lowers background noise and more importantly increases the identification of binding sites to a level near to single-base resolution by effectively footprinting DNA-bound proteins. By doing so, ChIP-exo offers new opportunities for a better characterization of the complex and fascinating architecture that resides in DNA-proteins interactions and provides new insights for the comprehension of important molecular mechanisms.

Key words

Chromatin immunoprecipitation ChIP-exo Protein-DNA interaction DNA-binding protein Next-generation sequencing DNA footprinting Formaldehyde cross-linking Genomics Exonuclease degradation Gene regulation 



We are grateful to Nicolas Carraro and Vincent Burrus for the gift of the E. coli pVCR94ΔX strain. We thank Pierre-Étienne Jacques and Stéphanie Bianco for technical assistance, the Centre de calcul scientifique of Université de Sherbrooke for computational resources and technical support, as well as Vincent Baby for his precious comments on the manuscript. This work was supported by the Fonds québécois de la recherche sur la nature et les technologies through an MSc scholarship awarded to D.M. and a Projet de recherche en équipe grant awarded to S.R., and Vincent Burrus. S.R. holds a Chercheur boursier Junior 1 award from the Fonds de recherche Québec-Santé.


  1. 1.
    Carraro N, Matteau D, Luo P et al (2014) The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination. PLoS Genet 10:e1004714PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Halford SE, Marko JF (2004) How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res 32:3040–3052PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309CrossRefPubMedGoogle Scholar
  4. 4.
    Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360CrossRefPubMedGoogle Scholar
  5. 5.
    Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502CrossRefPubMedGoogle Scholar
  7. 7.
    Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Boyle A, Davis S, Shulha H et al (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Thurman R, Rynes E, Humbert R (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Boyle AP, Song L, Lee BK et al (2011) High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Res 21:456–464PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Rhee HS, Pugh BF (2012) ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Current protocols in molecular biology, Unit 21.24. Wiley, New YorkGoogle Scholar
  12. 12.
    Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147:1408–1419PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Rhee HS, Pugh BF (2012) Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483:295–301PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Serandour A, Brown GD, Cohen JD et al (2013) Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1-DNA binding properties. Genome Biol 14:R147PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Lassmann T, Hayashizaki Y, Daub CO (2011) SAMStat: monitoring biases in next generation sequencing data. Bioinformatics 27:130–131PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Y, Liu T, Meyer C et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Phillips T (2005) Affinity chromatography in antibody and antigen purification. Handbook of affinity chromatography, 2nd edn. CRC, Boca Raton, pp 367–397CrossRefGoogle Scholar
  23. 23.
    Svotelis A, Gévry N, Gaudreau L (2009) Chromatin immunoprecipitation in mammalian cells. In: Moss T, Leblanc B (eds) DNA-protein interactions. Humana, New Jersey, pp 243–251CrossRefGoogle Scholar
  24. 24.
    Rodrigue S, Materna AC, Timberlake SC et al (2010) Unlocking short read sequencing for metagenomics. PLoS One 5:e11840PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Carraro N, Sauvé M, Matteau D et al (2014) Development of pVCR94ΔX from Vibrio cholerae, a prototype for studying multidrug resistant IncA/C conjugative plasmids. Front Microbiol 5:44PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36PubMedGoogle Scholar
  27. 27.
    Bailey T, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14:48–54CrossRefPubMedGoogle Scholar
  28. 28.
    Coulombe C, Poitras C, Nordell-Markovits A et al (2014) VAP: a versatile aggregate profiler for efficient genome-wide data representation and discovery. Nucleic Acids Res 42:W485–W493PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Département de biologie, Faculté des sciencesUniversité de SherbrookeSherbrookeCanada

Personalised recommendations