Glycoconjugate Vaccines: The Regulatory Framework

  • Christopher JonesEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1331)


Most vaccines, including the currently available glycoconjugate vaccines, are administered to healthy infants, to prevent future disease. The safety of a prospective vaccine is a key prerequisite for approval. Undesired side effects would not only have the potential to damage the individual infant but also lead to a loss of confidence in the respective vaccine—or vaccines in general—on a population level. Thus, regulatory requirements, particularly with regard to safety, are extremely rigorous. This chapter highlights regulatory aspects on carbohydrate-based vaccines with an emphasis on analytical approaches to ensure the consistent quality of successive manufacturing lots.

Key words

Regulatory requirements Quality control World Health Organization Pharmacopeias Batch release 



(current) Good manufacturing practice


Committee for Proprietary Medicinal Products


Capsular polysaccharide


European Medicines Agency


European Pharmacopoeia


Expanded Programme on Immunization


Food and Drug Administration


Haemophilus influenzae type b


High performance anion exchange chromatography


High performance liquid chromatography


High performance size exclusion chromatography


International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use


International Standards


Limulus amoebocyte lysate


Multiple angle laser light scattering




Nuclear magnetic resonance


National Regulatory Authority


National Regulatory Laboratory


Official Control Authority Batch Release




Single human dose


Système International d’Unités


WHO Technical report series


United States Pharmacopeia


World Health Organization


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Jones C, Lee CK, Ahn C et al (2013) WHO meeting report: Working group on quality, safety and efficacy of typhoid Vi capsular polysaccharide conjugate vaccines, Jeju, Republic of Korea, 5–7 September 2012. Vaccine 31:4466–4469PubMedCrossRefGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    WHO TRS (2000). 897:27–60Google Scholar
  11. 11.
    WHO TRS (2006). 962:115–172Google Scholar
  12. 12.
    WHO TRS (2001). 924:102–128Google Scholar
  13. 13.
    WHO TRS (2004). 926:90–94Google Scholar
  14. 14.
    WHO TRS (2007). 963:225–238Google Scholar
  15. 15.
    WHO TRS (2002). 904:94–155Google Scholar
  16. 16.
    WHO TRS (1980). 658:174–184Google Scholar
  17. 17.
    WHO TRS (1974). 594:50–75Google Scholar
  18. 18.
    WHO TRS (2009). 977:91–151Google Scholar
  19. 19.
  20. 20.
  21. 21.
    WHO TRS (1994). 840:14–33Google Scholar
  22. 22.
  23. 23.
    Haemophilus Type b conjugate vaccine. European Pharmacopeia, Edition 8.2, European Pharmaocopiea, Strasbourg (2014)Google Scholar
  24. 24.
    <1235> Vaccines for Human Use—General Considerations: USP 37. United States Pharmacopeial Commission, Rockville, MD, 2014Google Scholar
  25. 25.
    <1238> Vaccines for human use—bacterial vaccines: USP 37. United States Pharmacopeial Commission, Rockville, MD, 2014Google Scholar
  26. 26.
    <1234> Vaccines for human use—polysaccharide and glycoconjugate vaccines: USP 37. United States Pharmacopeial Commission, Rockville, MD, 2014Google Scholar
  27. 27.
  28. 28.
    Schlesinger Y, Granoff DM (1992) Avidity and bactericidal activity of antibody elicited by different Haemophilus influenzae type b conjugate vaccines. The Vaccine Study Group. JAMA 267:1489–1494PubMedCrossRefGoogle Scholar
  29. 29.
    Frasch CE, Borrow R, Donnelly J (2009) Bactericidal antibody is the immunologic surrogate of protection against meningococcal disease. Vaccine 27(Suppl 2):B112–B116PubMedCrossRefGoogle Scholar
  30. 30.
    Romero-Steiner S, Frasch CE, Carlone G et al (2006) Use of opsonophagocytosis for serological evaluation of pneumococcal vaccines. Clin Vaccine Immunol 13:165–169PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Maiden MC, Ibarz-Pavón AB, Urwin R et al (2008) Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. J Infect Dis 197:737–743PubMedCrossRefGoogle Scholar
  32. 32.
    Nurhonen M, Cheng AC, Auranen K (2013) Pneumococcal transmission and disease in silico: a microsimulation model of the indirect effects of vaccination. PLoS One 8:e56079PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Pilishvili T, Lexau C, Farley MM (2010) Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis 201:32–41PubMedCrossRefGoogle Scholar
  34. 34.
    Miller E, Salisbury D, Ramsay M (2001) Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine 20(Suppl 1):S58–S67PubMedCrossRefGoogle Scholar
  35. 35.
    Balmer P, Borrow R (2004) Serologic correlates of protection for evaluating the response to meningococcal vaccines. Expert Rev Vaccines 3:77–87PubMedCrossRefGoogle Scholar
  36. 36.
    Campbell H, Borrow R, Salisbury D et al (2009) Meningococcal C conjugate vaccine: the experience in England and Wales. Vaccine 27(Suppl 2):B20–B29PubMedCrossRefGoogle Scholar
  37. 37.
    Siber GR, Chang I, Baker S et al (2005) Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine 25:3816–3826CrossRefGoogle Scholar
  38. 38.
    Lemercinier X, Jones C (2000) An NMR spectroscopic identity test for the control of the capsular polysaccharide from Haemophilus influenzae type b. Biologicals 28:75–83Google Scholar
  39. 39.
    Jones C, Lemercinier X (2002) Use and validation of an NMR test for the identity and O-acetyl content of capsular polysaccharides from Neisseria meningitidis used in vaccine manufacture. J Pharm Biomed Anal 30:1233–1247PubMedCrossRefGoogle Scholar
  40. 40.
    Abeygunawardana C, Williams TC, Sumner JS et al (2000) Development and validation of an NMR-based identity assay for bacterial polysaccharides. Anal Biochem 279:226–240PubMedCrossRefGoogle Scholar
  41. 41.
    Lemercinier X, Martinez-Cabrera I, Jones C (2000) Use and validation of an NMR test for the identity and O-acetyl content the Salmonella typhi Vi capsular polysaccharide vaccine. Biologicals 28:17–24PubMedCrossRefGoogle Scholar
  42. 42.
    2.2.33 Nuclear Magnetic Resonance Spectrometry. European Pharmacopoeia, Edition 8.2, EDQM, Strasbourg, France, 2014Google Scholar
  43. 43.
    2.5.19 O-acetyl groups in Polysaccharide Vaccines. European Pharmacopoeia, Edition 8.2, EDQM, Strasbourg, France, 2014Google Scholar
  44. 44.
    Xu Q, Abeygunawardana C, Ng AS et al (2005) Characterization and quantification of C-polysaccharide in Streptococcus pneumoniae capsular polysaccharide preparations. Anal Biochem 336:262–272PubMedCrossRefGoogle Scholar
  45. 45.
    Lee CJ (1983) The quantitative immunochemical determination of pneumococcal and meningococcal capsular polysaccharides by light scattering rate nephelometry. J Biol Stand 11:55–64PubMedCrossRefGoogle Scholar
  46. 46.
    MacNair JE, Desai T, Teyral J et al (2005) Alignment of absolute and relative molecular size specifications for a polyvalent pneumococcal polysaccharide vaccine (PNEUMOVAX 23). Biologicals 33:49–58PubMedCrossRefGoogle Scholar
  47. 47.
    Ravenscroft N, Averani G, Bartoloni A et al (1999) Size determination of bacterial capsular oligosaccharides used to prepare conjugate vaccines. Vaccine 17:2802–2816PubMedCrossRefGoogle Scholar
  48. 48.
    D'Ambra AJ, Baugher JE, Concannon PE et al (1997) Direct and indirect methods for molar-mass analysis of fragments of the capsular polysaccharide of Haemophilus influenzae type b. Anal Biochem 250:228–236PubMedCrossRefGoogle Scholar
  49. 49.
    Xu Q, Klees J, Teyral J et al (2005) Quantitative nuclear magnetic resonance analysis and characterization of the derivatized Haemophilus influenzae type b polysaccharide intermediate for PedvaxHIB. Anal Biochem 337:235–245PubMedCrossRefGoogle Scholar
  50. 50.
    2.5.31 Ribose in Polysaccharide Vaccines. European Pharmacopoeia, Edition 8.2, EDQM, Strasbourg, France, 2014Google Scholar
  51. 51.
    2.5.23 Sialic Acid in Polysaccharide Vaccines. European Pharmacopoeia, Edition 8.2, EDQM, Strasbourg, France, 2014Google Scholar
  52. 52.
    Tsai CM, Gu XX, Byrd RA (1994) Quantification of polysaccharide in Haemophilus influenzae type b conjugate and polysaccharide vaccines by high-performance anion-exchange chromatography with pulsed amperometric detection. Vaccine 12:700–706PubMedCrossRefGoogle Scholar
  53. 53.
    Gudlavalleti SK, Crawford EN, Harder JD et al (2014) Quantification of each serogroup polysaccharide of Neisseria meningitidis in A/C/Y/W-135-DT conjugate vaccine by high-performance anion-exchange chromatography-pulsed amperometric detection analysis. Anal Chem 86:5383–5390PubMedCrossRefGoogle Scholar
  54. 54.
    Cui C, Carbis R, An SJ et al (2010) Physical and chemical characterization and immunologic properties of Salmonella enterica serovar Typhi capsular polysaccharide-diphtheria toxoid conjugates. Clin Vaccine Immunol 17:73–79PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Ravenscroft N (2000) The application of NMR spectroscopy to track the industrial preparation of polysaccharide and derives glycoconjugate vaccines. In: International Conference Biological Beyond 2000, European Pharmacopeia, Strasbourg, 2000. pp 131–144Google Scholar
  56. 56.
    Seid RC Jr, Boykins RA, Liu DF et al (1989) Chemical evidence for covalent linkages of a semi-synthetic glycoconjugate vaccine for Haemophilus influenzae type B disease. Glycoconj J 6:489–498PubMedCrossRefGoogle Scholar
  57. 57.
    Lei QP, Shannon AG, Heller RK et al (2000) Quantification of free polysaccharide in meningococcal polysaccharide-diphtheria toxoid conjugate vaccines. Dev Biol (Basel) 103:259–264Google Scholar
  58. 58.
    Peeters CC, Tenbergen-Meekes AM, Poolman JT et al (1992) Immunogenicity of a Streptococcus pneumoniae type 4 polysaccharide–protein conjugate vaccine is decreased by admixture of high doses of free saccharide. Vaccine 10:833–840PubMedCrossRefGoogle Scholar
  59. 59.
  60. 60.
    Lei QP, Lamb DH, Shannon AG et al (2004) Quantification of residual EDU (N-ethyl-N′-(dimethylaminopropyl) carbodiimide (EDC) hydrolyzed urea derivative) and other residual by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 813:103–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory for Molecular StructureNational Institute for Biological Standards and ControlHertfordshireUK

Personalised recommendations