Bacterial Persistence pp 83-100

Part of the Methods in Molecular Biology book series (MIMB, volume 1333) | Cite as

Analyzing Persister Physiology with Fluorescence-Activated Cell Sorting

  • Mehmet A. Orman
  • Theresa C. Henry
  • Christina J. DeCoste
  • Mark P. Brynildsen

Abstract

Bacterial persisters are phenotypic variants that exhibit an impressive ability to tolerate antibiotics. Persisters are hypothesized to cause relapse infections, and therefore, understanding their physiology may lead to novel therapeutics to treat recalcitrant infections. However, persisters have yet to be isolated due to their low abundance, transient nature, and similarity to the more highly abundant viable but non-culturable cells (VBNCs), resulting in limited knowledge of their phenotypic state. This technical hurdle has been addressed through the use of fluorescence-activated cell sorting (FACS) and quantification of persister levels in the resulting sorted fractions. These assays provide persister phenotype distributions, which can be compared to the phenotype distributions of the entire population, and can also be used to examine persister heterogeneity. Here, we describe two detailed protocols for analysis of persister physiology with FACS. One protocol assays the metabolic state of persisters using a fluorescent metabolic stain, whereas the other assays the growth state of persisters with use of a fluorescent protein.

Keywords

Persister Antibiotic Fluorescence-activated cell sorting (FACS) Phenotypic heterogeneity Viable but non-culturable cell (VBNC) Redox sensor green (RSG) 

References

  1. 1.
    Amato SM, Fazen CH, Henry TC et al (2014) The role of metabolism in bacterial persistence. Front Microbiol 5:70PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Kint CI, Verstraeten N, Fauvart M et al (2012) New-found fundamentals of bacterial persistence. Trends Microbiol 20(12):577–585CrossRefPubMedGoogle Scholar
  3. 3.
    Balaban NQ, Merrin J, Chait R et al (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625CrossRefPubMedGoogle Scholar
  4. 4.
    Lewis K (2010) Persister cells. In: Gottesman S, Harwood CS (eds) Annual review of microbiology, vol 64. Annual Reviews, Palo Alto, pp 357–372Google Scholar
  5. 5.
    Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5(1):48–56CrossRefPubMedGoogle Scholar
  6. 6.
    Fauvart M, De Groote VN, Michiels J (2011) Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60(Pt 6):699–709CrossRefPubMedGoogle Scholar
  7. 7.
    Joers A, Kaldalu N, Tenson T (2010) The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. J Bacteriol 192(13):3379–3384PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Roostalu J, Jõers A, Luidalepp H et al (2008) Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol 8:68PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Orman MA, Brynildsen MP (2013) Establishment of a method to rapidly assay bacterial persister metabolism. Antimicrob Agents Chemother 57(9):4398–4409PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Orman MA, Brynildsen MP (2013) Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 57(7):3230–3239PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Wakamoto Y, Dhar N, Chait R et al (2013) Dynamic persistence of antibiotic-stressed mycobacteria. Science 339(6115):91–95CrossRefPubMedGoogle Scholar
  12. 12.
    Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43 Spec No:93–100Google Scholar
  13. 13.
    Keren I, Shah D, Spoering A et al (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186(24):8172–8180PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Shah D, Zhang Z, Khodursky A et al (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Canas-Duarte SJ, Restrepo S, Pedraza JM (2014) Novel protocol for persister cells isolation. PLoS One 9(2):e88660PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Amato SM, Orman MA, Brynildsen MP (2013) Metabolic control of persister formation in Escherichia coli. Mol Cell 50(4):475–487CrossRefPubMedGoogle Scholar
  17. 17.
    Vega NM, Allison KR, Khalil AS et al (2012) Signaling-mediated bacterial persister formation. Nat Chem Biol 8(5):431–433PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Allison KR, Brynildsen MP, Collins JJ (2011) Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol 14(5):593–598PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Keren I, Kaldalu N, Spoering A et al (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Let 230(1):13–18CrossRefGoogle Scholar
  20. 20.
    Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2008) Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. ISME J 2(7):696–706CrossRefPubMedGoogle Scholar
  21. 21.
    Ullrich S, Karrasch B, Hoppe HG et al (1996) Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride. Appl Environ Microbiol 62(12):4587–4593PubMedCentralPubMedGoogle Scholar
  22. 22.
    Gray DR, Yue S, Chueng CY et al (2005) Bacterial vitality detected by a novel fluorogenic redox dye using flow cytometry. Abstr Gen Meet Am Soc Microbiol 105:331Google Scholar
  23. 23.
    Arnold LW, Lannigan J (2010) Practical issues in high-speed cell sorting. Curr Protoc Cytom Chapter 1, Unit 1.24.1-30Google Scholar
  24. 24.
    Givan A (2001) Flow cytometry: first principles, 2nd edn. Wiley-Liss, New YorkCrossRefGoogle Scholar
  25. 25.
    Shapiro H (2003) Practical flow cytometry: fourth edition. Wiley-Liss, New YorkCrossRefGoogle Scholar
  26. 26.
    Ormerod M (2000) Flow cytometry: a practical approach. Oxford University Press, New YorkGoogle Scholar
  27. 27.
    Holmes KL, Fontes B, Hogarth P et al (2014) International Society for the Advancement of Cytometry cell sorter biosafety standards. Cytom A 85(5):434–453CrossRefGoogle Scholar
  28. 28.
    Schmid I, Nicholson JK, Giorgi JV et al (1997) Biosafety guidelines for sorting of unfixed cells. Cytometry 28(2):99–117CrossRefPubMedGoogle Scholar
  29. 29.
    Schmid I, Lambert C, Ambrozak D et al (2007) International Society for Analytical Cytology biosafety standard for sorting of unfixed cells. Cytom A 71(6):414–437CrossRefGoogle Scholar
  30. 30.
    Ericsson HM, Sherris JC (1971) Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol Microbiol Scand B Microbiol Immunol 217(Suppl 217):1+PubMedGoogle Scholar
  31. 31.
    Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16CrossRefPubMedGoogle Scholar
  32. 32.
    Kohanski MA, Dwyer DJ, Hayete B et al (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810CrossRefPubMedGoogle Scholar
  33. 33.
    Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mehmet A. Orman
    • 1
  • Theresa C. Henry
    • 2
    • 3
  • Christina J. DeCoste
    • 2
  • Mark P. Brynildsen
    • 1
    • 2
  1. 1.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  3. 3.Rutgers Robert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations