Advertisement

Computational Methods to Model Persistence

  • Alexandra Vandervelde
  • Remy Loris
  • Jan Danckaert
  • Lendert Gelens
Part of the Methods in Molecular Biology book series (MIMB, volume 1333)

Abstract

Bacterial persister cells are dormant cells, tolerant to multiple antibiotics, that are involved in several chronic infections. Toxin–antitoxin modules play a significant role in the generation of such persister cells. Toxin–antitoxin modules are small genetic elements, omnipresent in the genomes of bacteria, which code for an intracellular toxin and its neutralizing antitoxin. In the past decade, mathematical modeling has become an important tool to study the regulation of toxin–antitoxin modules and their relation to the emergence of persister cells. Here, we provide an overview of several numerical methods to simulate toxin–antitoxin modules. We cover both deterministic modeling using ordinary differential equations and stochastic modeling using stochastic differential equations and the Gillespie method. Several characteristics of toxin–antitoxin modules such as protein production and degradation, negative autoregulation through DNA binding, toxin–antitoxin complex formation and conditional cooperativity are gradually integrated in these models. Finally, by including growth rate modulation, we link toxin–antitoxin module expression to the generation of persister cells.

Key words

Modeling Toxin–antitoxin Persister ODE Stochastic Gillespie 

Notes

Acknowledgements

This research was supported by the Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), by the Research Foundation - Flanders (FWO-Vlaanderen) for project support and individual support (A.V. and L.G.), by the Belgian American Educational Foundation (L.G.), and by the Onderzoeksraad of the Vrije Universiteit Brussel. The authors thank Lydia Hill, Abel Garcia-Pino, and Egon Geerardyn for fruitful discussions.

References

  1. 1.
    Pomerening JR, Sontag ED, Ferrell JE Jr (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5(4):346–351CrossRefPubMedGoogle Scholar
  2. 2.
    Novak B, Tyson JJ (1993) Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J Cell Sci 106(Pt 4):1153–1168PubMedGoogle Scholar
  3. 3.
    Noble D (2004) Modeling the heart. Physiology (Bethesda) 19:191–197CrossRefGoogle Scholar
  4. 4.
    Grassly NC, Fraser C (2008) Mathematical models of infectious disease transmission. Nat Rev Microbiol 6(6):477–487PubMedGoogle Scholar
  5. 5.
    Cataudella I, Trusina A, Sneppen K, Gerdes K, Mitarai N (2012) Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res 40(14):6424–6434PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169(4):1807–1814PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625CrossRefPubMedGoogle Scholar
  8. 8.
    Cogan NG (2007) Incorporating toxin hypothesis into a mathematical model of persister formation and dynamics. J Theor Biol 248(2):340–349CrossRefPubMedGoogle Scholar
  9. 9.
    Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C, Shoresh N, Biham O, Balaban NQ (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci USA 107(28):12541–12546PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Lou C, Li Z, Ouyang Q (2008) A molecular model for persister in E. coli. J Theor Biol 255(2):205–209CrossRefPubMedGoogle Scholar
  11. 11.
    Koh RS, Dunlop MJ (2012) Modeling suggests that gene circuit architecture controls phenotypic variability in a bacterial persistence network. BMC Syst Biol 6:47PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Cataudella I, Sneppen K, Gerdes K, Mitarai N (2013) Conditional cooperativity of toxin - antitoxin regulation can mediate bistability between growth and dormancy. PLoS Comput Biol 9(8):e1003174PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Fasani RA, Savageau MA (2013) Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype. Proc Natl Acad Sci USA 110(27):E2528–E2537PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Gelens L, Hill L, Vandervelde A, Danckaert J, Loris R (2013) A general model for toxin-antitoxin module dynamics can explain persister cell formation in E. coli. PLoS Comput Biol 9(8):e1003190Google Scholar
  15. 15.
    Feng J, Kessler DA, Ben-Jacob E, Levine H (2014) Growth feedback as a basis for persister bistability. Proc Natl Acad Sci USA 111(1):544–549PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372CrossRefPubMedGoogle Scholar
  17. 17.
    Fauvart M, De Groote VN, Michiels J (2011) Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J Med Microbiol 60(Pt 6):699–709CrossRefPubMedGoogle Scholar
  18. 18.
    Maisonneuve E, Gerdes K (2014) Molecular mechanisms underlying bacterial persisters. Cell 157(3):539–548CrossRefPubMedGoogle Scholar
  19. 19.
    Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154(5):1140–1150CrossRefPubMedGoogle Scholar
  20. 20.
    Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33(3):966–976PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Fozo EM, Hemm MR, Storz G (2008) Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 72(4):579–589Google Scholar
  22. 22.
    Gerdes K, Maisonneuve E (2012) Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66:103–123CrossRefPubMedGoogle Scholar
  23. 23.
    Buts L, Lah J, Dao-Thi MH, Wyns L, Loris R (2005) Toxin-antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci 30(12):672–679CrossRefPubMedGoogle Scholar
  24. 24.
    Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79CrossRefPubMedGoogle Scholar
  25. 25.
    Blower TR, Salmond GP, Luisi BF (2011) Balancing at survival’s edge: the structure and adaptive benefits of prokaryotic toxin-antitoxin partners. Curr Opin Struct Biol 21(1):109–118CrossRefPubMedGoogle Scholar
  26. 26.
    Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY, Fineran PC, Luisi BF, Salmond GP (2012) Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res 40(13):6158–6173PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, Sanchez-Torres V, Quiroga C, Zheng K, Herrmann T, Peti W, Benedik MJ, Page R, Wood TK (2012) A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8(10):855–861PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA 108(32):13206–13211PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343(6167):204–208CrossRefPubMedGoogle Scholar
  30. 30.
    Tripathi A, Dewan PC, Barua B, Varadarajan R (2012) Additional role for the ccd operon of F-plasmid as a transmissible persistence factor. Proc Natl Acad Sci USA 109(31):12497–12502PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Tian QB, Ohnishi M, Tabuchi A, Terawaki Y (1996) A new plasmid-encoded proteic killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem Biophys Res Commun 220(2):280–284CrossRefPubMedGoogle Scholar
  32. 32.
    Yamaguchi Y, Park JH, Inouye M (2009) MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J Biol Chem 284(42):28746–28753PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Hallez R, Geeraerts D, Sterckx Y, Mine N, Loris R, Van Melderen L (2010) New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol Microbiol 76(3):719–732CrossRefPubMedGoogle Scholar
  34. 34.
    Overgaard M, Borch J, Gerdes K (2009) RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J Mol Biol 394(2):183–196PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG (2009) Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323(5912):396–401PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Loris R, Dao-Thi MH, Bahassi EM, Van Melderen L, Poortmans F, Liddington R, Couturier M, Wyns L (1999) Crystal structure of CcdB, a topoisomerase poison from E. coli. J Mol Biol 285(4):1667–1677CrossRefPubMedGoogle Scholar
  37. 37.
    Li GY, Zhang Y, Chan MC, Mal TK, Hoeflich KP, Inouye M, Ikura M (2006) Characterization of dual substrate binding sites in the homodimeric structure of Escherichia coli mRNA interferase MazF. J Mol Biol 357(1):139–150CrossRefPubMedGoogle Scholar
  38. 38.
    Garcia-Pino A, Balasubramanian S, Wyns L, Gazit E, De Greve H, Magnuson RD, Charlier D, van Nuland NA, Loris R (2010) Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142(1):101–111CrossRefPubMedGoogle Scholar
  39. 39.
    Afif H, Allali N, Couturier M, Van Melderen L (2001) The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol Microbiol 41(1):73–82CrossRefPubMedGoogle Scholar
  40. 40.
    Overgaard M, Borch J, Jorgensen MG, Gerdes K (2008) Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol Microbiol 69(4):841–857CrossRefPubMedGoogle Scholar
  41. 41.
    De Jonge N, Garcia-Pino A, Buts L, Haesaerts S, Charlier D, Zangger K, Wyns L, De Greve H, Loris R (2009) Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered protein domain. Mol Cell 35(2):154–163CrossRefPubMedGoogle Scholar
  42. 42.
    Brown BL, Lord DM, Grigoriu S, Peti W, Page R (2013) The Escherichia coli toxin MqsR destabilizes the transcriptional repression complex formed between the antitoxin MqsA and the mqsRA operon promoter. J Biol Chem 288(2):1286–1294PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Magnuson R, Lehnherr H, Mukhopadhyay G, Yarmolinsky MB (1996) Autoregulation of the plasmid addiction operon of bacteriophage P1. J Biol Chem 271(31):18705–18710CrossRefPubMedGoogle Scholar
  44. 44.
    Dao-Thi MH, Charlier D, Loris R, Maes D, Messens J, Wyns L, Backmann J (2002) Intricate interactions within the ccd plasmid addiction system. J Biol Chem 277(5):3733–3742CrossRefPubMedGoogle Scholar
  45. 45.
    McAdams HH, Arkin A (1999) It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15(2):65–69CrossRefPubMedGoogle Scholar
  46. 46.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186CrossRefPubMedGoogle Scholar
  47. 47.
    Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31(1):69–73CrossRefPubMedGoogle Scholar
  48. 48.
    Carrier GF (1968) Ordinary differential equations. A Blaisdell book in pure and applied mathematics. Blaisdell Pub. Co, Waltham, MAGoogle Scholar
  49. 49.
    Atkinson K, Han W, Stewart DE (2009) Numerical solution of ordinary differential equations. Pure and applied mathematics. Wiley, Hoboken, NJCrossRefGoogle Scholar
  50. 50.
    Coffey WT, Kalmykov YP, Waldron JT (2004) The Langevin equation. With applications to stochastic problems in physics, chemistry and electrical engineering. World Scientific series in contemporary chemical physics. World Scientific Publishing, SingaporeGoogle Scholar
  51. 51.
    Gardiner CW (2004) Handbook of stochastic methods for physics, chemistry, and the natural sciences. Springer, BerlinCrossRefGoogle Scholar
  52. 52.
    San Miguel M, Toral R (2000) Stochastic effects in physical systems. In: Instabilities and nonequilibrium structures VI. Springer, Netherlands, pp 35–127Google Scholar
  53. 53.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361CrossRefGoogle Scholar
  54. 54.
    Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440(7082):358–362CrossRefPubMedGoogle Scholar
  55. 55.
    McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94(3):814–819PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Loris R, Garcia-Pino A (2014) Disorder- and dynamics-based regulatory mechanisms in toxin-antitoxin modules. Chem Rev 114(13):6933–6947CrossRefPubMedGoogle Scholar
  57. 57.
    Hayes F, Van Melderen L (2011) Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 46(5):386–408CrossRefPubMedGoogle Scholar
  58. 58.
    Nevozhay D, Adams RM, Van Itallie E, Bennett MR, Balazsi G (2012) Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput Biol 8(4):e1002480PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NA, Loris R, Zenkin N (2013) The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat Chem Biol 9(12):811–817CrossRefPubMedGoogle Scholar
  60. 60.
    Christensen SK, Gerdes K (2003) RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol 48(5):1389–1400CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexandra Vandervelde
    • 1
    • 2
  • Remy Loris
    • 1
    • 2
  • Jan Danckaert
    • 3
  • Lendert Gelens
    • 3
    • 4
  1. 1.Structural Biology Research Center, VIBBrusselsBelgium
  2. 2.Department of Biotechnology (DBIT)Structural Biology BrusselsBrusselBelgium
  3. 3.Applied Physics Research Group (APHY)Vrije Universiteit BrusselBrusselBelgium
  4. 4.Department of Chemical and Systems BiologyStanford University School of MedicineStanfordUSA

Personalised recommendations