Drosophila Oogenesis pp 163-178

Part of the Methods in Molecular Biology book series (MIMB, volume 1328) | Cite as

Immuno-Electron Microscopy and Electron Microscopic In Situ Hybridization for Visualizing piRNA Biogenesis Bodies in Drosophila Ovaries

  • Shinsuke Shibata
  • Yukiko Murota
  • Yoshinori Nishimoto
  • Mana Yoshimura
  • Toshihiro Nagai
  • Hideyuki Okano
  • Mikiko C. Siomi

Abstract

Immuno-electron microscopy and electron microscopic in situ hybridization are powerful tools to identify the precise subcellular localization of specific proteins and RNAs at the ultramicroscopic level. Here we describe detailed procedures for how to detect the precise location of a specific target labeled with both fluorescence and gold particles. Although they have been developed for the analysis of Drosophila ovarian somatic cells, these techniques are suitable for a wide range of biological applications including human, primate, and rodent analysis.

Keywords

Yb Zuc flam PIWI-interacting RNAs piRNAs Electron microscopy Immuno-electron microscopy In situ hybridization ISH Electron microscopic in situ hybridization EM-ISH Fluorescence immunohistochemistry 

References

  1. 1.
    Siomi MC, Sato K, Pezic D et al (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246–258CrossRefPubMedGoogle Scholar
  2. 2.
    Juliano C, Wang J, Lin H (2011) Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet 45:447–469CrossRefPubMedGoogle Scholar
  3. 3.
    Ishizu H, Siomi H, Siomi MC (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 26:2361–2373PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Malone CD, Brennecke J, Dus M et al (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:522–535PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Brennecke J, Aravin AA, Stark A et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103CrossRefPubMedGoogle Scholar
  6. 6.
    Vagin VV, Sigova A, Li C et al (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324CrossRefPubMedGoogle Scholar
  7. 7.
    Saito K, Nishida KM, Mori T et al (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Aravin A, Gaidatzis D, Pfeffer S et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207PubMedGoogle Scholar
  9. 9.
    Gunawardane LS, Saito K, Nishida KM et al (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315:1587–1590CrossRefPubMedGoogle Scholar
  10. 10.
    Saito K, Ishizu H, Komai M et al (2010) Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev 24:2493–2498PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Olivieri D, Sykora MM, Sachidanandam R et al (2010) An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J 29:3301–3317PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Handler D, Olivieri D, Novatchkova M et al (2011) A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J 30:3977–3993PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Olivieri D, Senti KA, Subramanian S et al (2012) The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol Cell 47:954–969PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Qi H, Watanabe T, Ku HY et al (2011) The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. J Biol Chem 286:3789–3797PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Szakmary A, Reedy M, Qi H et al (2009) The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. J Cell Biol 185:613–627PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Murota Y, Ishizu H, Nakagawa S et al (2014) Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. Cell Rep 8:103–113CrossRefPubMedGoogle Scholar
  17. 17.
    Matsuno A, Nagashima T, Ohsugi Y et al (2000) Electron microscopic observation of intracellular expression of mRNA and its protein product: technical review on ultrastructural in situ hybridization and its combination with immunohistochemistry. Histol Histopathol 15:261–268PubMedGoogle Scholar
  18. 18.
    Herrera GA (1992) Ultrastructural immunolabeling: a general overview of techniques and applications. Ultrastruct Pathol 16:37–45CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang L, Kaneko S, Kikuchi K et al (2014) Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition. Mol Brain 7:14PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Takano M, Kawabata S, Komaki Y et al (2014) Inflammatory cascades mediate synapse elimination in spinal cord compression. J Neuroinflammation 11:40PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Numasawa-Kuroiwa Y, Okada Y, Shibata S et al (2014) Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes. Stem Cell Rep 2:648–661CrossRefGoogle Scholar
  22. 22.
    Nishimoto Y, Nakagawa S, Hirose T et al (2013) The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain 6:31PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Takano M, Hikishima K, Fujiyoshi K et al (2012) MRI characterization of paranodal junction failure and related spinal cord changes in mice. PLoS One 7, e52904PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Yasuda A, Tsuji O, Shibata S et al (2011) Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 29:1983–1994CrossRefPubMedGoogle Scholar
  25. 25.
    Nagoshi N, Shibata S, Hamanoue M et al (2011) Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia 59:771–784CrossRefPubMedGoogle Scholar
  26. 26.
    Tada H, Okano HJ, Takagi H et al (2010) Fbxo45, a novel ubiquitin ligase, regulates synaptic activity. J Biol Chem 285:3840–3849PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Kumagai G, Okada Y, Yamane J et al (2009) Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury. PLoS One 4, e7706PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Saito K (2014) RNAi and overexpression of genes in ovarian somatic cells. Methods Mol Biol 1093:25–33CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shinsuke Shibata
    • 1
  • Yukiko Murota
    • 2
  • Yoshinori Nishimoto
    • 1
  • Mana Yoshimura
    • 1
  • Toshihiro Nagai
    • 3
  • Hideyuki Okano
    • 1
  • Mikiko C. Siomi
    • 2
  1. 1.Department of Physiology, School of MedicineKeio UniversityTokyoJapan
  2. 2.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
  3. 3.Electron Microscope Laboratory, School of MedicineKeio UniversityTokyoJapan

Personalised recommendations