Advertisement

C. elegans pp 221-229 | Cite as

Sampling and Isolation of C. elegans from the Natural Habitat

  • Nausicaa Poullet
  • Christian Braendle
Part of the Methods in Molecular Biology book series (MIMB, volume 1327)

Abstract

Wild populations of the model organism C. elegans allow characterization of natural genetic variation underlying diverse phenotypic traits. Here we provide a simple protocol on how to sample and rapidly identify C. elegans wild isolates. We outline how to find suitable habitats and organic substrates, followed by describing isolation and identification of C. elegans live cultures based on easily recognizable morphological characteristics, molecular barcodes and/or mating tests. This protocol uses standard laboratory equipment and requires no prior knowledge of C. elegans biology.

Key words

Caenorhabditis elegans Natural genetic variation Natural populations Wild isolates Natural habitat Ecology 

Notes

Acknowledgments

This protocol makes use of diverse contributions from the worm community and is primarily based on Caenorhabditis isolation methods established by Antoine Barrière and Marie-Anne Félix. Our research is financed by the Centre National de la Recherche Scientifique, France.

References

  1. 1.
    Gaertner BE, Phillips PC (2010) as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet Res (Camb) 92:331–348CrossRefGoogle Scholar
  2. 2.
    Andersen EC, Bloom JS, Gerke JP et al (2014) A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet 10, e1004156PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    McGrath PT, Xu Y, Ailion M et al (2011) Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477:321–325PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Andersen EC, Gerke JP, Shapiro JA et al (2012) Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 44:285–290PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Félix M-A, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20:R965–R969CrossRefPubMedGoogle Scholar
  6. 6.
    Barrière A, Félix M-A (2014) Isolation of C. elegans and related nematodes. In: The C. elegans Research Community (ed) Wormbook. http://dx.doi.org/10.1895/wormbook.1.115.2
  7. 7.
    Gimond C, Jovelin R, Han S et al (2013) Outbreeding depression with low genetic variation in selfing Caenorhabditis nematodes. Evolution 67:3087–3101CrossRefPubMedGoogle Scholar
  8. 8.
    Kiontke K, Félix M-A, Ailion M et al (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11:339PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Dolgin ES, Felix MA, Cutter AD (2008) Hakuna Nematoda: genetic and phenotypic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity 100:304–315CrossRefPubMedGoogle Scholar
  10. 10.
    Anderson JL, Albergotti L, Ellebracht B et al (2011) Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans? BMC Evol Biol 11:157PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Barrière A, Félix M-A (2005) High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr Biol 15:1176–1184Google Scholar
  12. 12.
    Barrière A, Félix M-A (2007) Temporal dynamics and linkage disequilibrium in natural C. elegans populations. Genetics 176:999–1011PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Felix MA, Duveau F (2012) Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol 10:59PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Haber M, Schüngel M, Putz A et al (2005) Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Mol Biol Evol 22:160–173CrossRefPubMedGoogle Scholar
  15. 15.
    Petersen C, Dirksen P, Prahl S et al (2014) The prevalence of Caenorhabditis elegans across 1.5 years in selected North German locations: the importance of substrate type, abiotic parameters, and Caenorhabditis competitors. BMC Ecol 14:4PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Sivasundar A, Hey J (2005) Sampling from natural populations with RNAI reveals high outcrossing and population structure in Caenorhabditis elegans. Curr Biol 15:1598–1602CrossRefPubMedGoogle Scholar
  17. 17.
    Caswell-Chen EP, Chen J, Lewis EE et al (2005) Revising the standard wisdom of C. elegans natural history: ecology of longevity. Sci Aging Knowl Environ 40:pe30Google Scholar
  18. 18.
    Felix MA, Jovelin R, Ferrari C et al (2013) Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest. BMC Evol Biol 13:10PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kiontke K, Sudhaus W (2006) Ecology of Caenorhabditis species. The C. elegans Research Community (ed) Wormbook. http://dx.doi.org/10.1895/wormbook. 1.37.1
  20. 20.
    Stiernagle T (2006) Maintenance of C. elegans. The C. elegans Research Community (ed) Wormbook. http://dx.doi.org/10.1895/wormbook.1.101.1
  21. 21.
    Felix MA, Braendle C, Cutter AD (2014) A streamlined system for species diagnosis in Caenorhabditis (Nematoda: Rhabditidae) with name designations for 15 distinct biological species. PLoS One 9, e94723PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Sudhaus W, Fitch D (2001) Comparative studies on the phylogeny and systematics of the Rhabditidae (Nematoda). J Nematol 33:1–69PubMedCentralPubMedGoogle Scholar
  23. 23.
    Sudhaus W, Kiontke K (1996) Phylogeny of Rhabditis subgenus Caenorhabditis (Rhabditidae Nematoda). J Zoo Syst Evol Res 34:217–233CrossRefGoogle Scholar
  24. 24.
    Chiang JT, Steciuk M, Shtonda B et al (2006) Evolution of pharyngeal behaviors and neuronal functions in free-living soil nematodes. J Exp Biol 209:1859–1873CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut de Biologie Valrose, CNRS UMR7277NiceFrance
  2. 2.INSERM U1091NiceFrance
  3. 3.Université Nice Sophia Antipolis, UFR SciencesNiceFrance

Personalised recommendations