Expression, Purification, and Crystallization of Full Length Ionotropic Glutamate Receptors

  • Maria V. Yelshanskaya
  • Kei Saotome
  • Minfen Li
  • Alexander I. SobolevskyEmail author
Part of the Neuromethods book series (NM, volume 106)


Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the majority of excitatory neurotransmission in brain and are implicated in nearly all aspects of central nervous system development and function. There is great clinical interest in iGluRs because their dysfunction is associated with chronic neurodegenerative conditions, psychiatric disorders, brain trauma and stroke. Despite physiological and pathophysiological importance, obtaining structural information about full-length iGluRs has proven to be a difficult task. To facilitate further structural/functional studies, we describe a detailed protocol of the full-length iGluR expression, purification, and crystallization.

Key words

Ionotropic glutamate receptor Membrane protein Ion channel Structure Insect cells Protein expression Protein purification Baculovirus X-ray crystallography Diffraction Crystals 



We thank Edward Twomey for comments on the manuscript. The authors were supported by the National Institutes of Health Grants R01 NS083660 (A.I.S.) and T32 GM008281 (K.S.) and by the Klingenstein Fellowship Award in the Neurosciences (A.I.S.).


  1. 1.
    Traynelis SF et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Bowie D (2008) Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord Drug Targets 7:129–143PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400CrossRefPubMedGoogle Scholar
  4. 4.
    Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170CrossRefPubMedGoogle Scholar
  5. 5.
    Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3:91–101CrossRefPubMedGoogle Scholar
  6. 6.
    O’Hara PJ et al (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11:41–52CrossRefPubMedGoogle Scholar
  7. 7.
    Stern-Bach Y et al (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13:1345–1357CrossRefPubMedGoogle Scholar
  8. 8.
    Wollmuth LP, Sobolevsky AI (2004) Structure and gating of the glutamate receptor ion channel. Trends Neurosci 27:321–328CrossRefPubMedGoogle Scholar
  9. 9.
    Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23:75–80CrossRefPubMedGoogle Scholar
  10. 10.
    Furukawa H (2012) Structure and function of glutamate receptor amino terminal domains. J Physiol 590:63–72PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Gouaux E (2004) Structure and function of AMPA receptors. J Physiol 554:249–253PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–756PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Yelshanskaya MV, Li M, Sobolevsky AI (2014) Structure of an agonist-bound ionotropic glutamate receptor. Science 345:1070–1074PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Durr KL et al (2014) Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 158:778–792PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Chen L, Durr KL, Gouaux E (2014) X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism. Science 345:1021–1026PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Meyerson JR et al (2014) Structural mechanism of glutamate receptor activation and desensitization. Nature 514(7522):328–34PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344:992–997PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Lee CH et al (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511:191–197PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Reeves PJ et al (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Dukkipati A et al (2008) BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr Purif 62:160–170PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681CrossRefPubMedGoogle Scholar
  22. 22.
    Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38CrossRefPubMedGoogle Scholar
  23. 23.
    Zacharias DA et al (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916CrossRefPubMedGoogle Scholar
  24. 24.
    Sommer B et al (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19CrossRefPubMedGoogle Scholar
  25. 25.
    Turski L et al (1998) ZK200775: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. Proc Natl Acad Sci U S A 95:10960–10965PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Fitzgerald DJ et al (2006) Protein complex expression by using multigene baculoviral vectors. Nat Methods 3:1021–1032CrossRefPubMedGoogle Scholar
  27. 27.
    Mancusso R et al (2011) Simple screening method for improving membrane protein thermostability. Methods 55:324–329PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Hattori M, Hibbs RE, Gouaux E (2012) A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20:1293–1299PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Bergfors T (2003) Seeds to crystals. J Struct Biol 142:66–76CrossRefPubMedGoogle Scholar
  30. 30.
    Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61:1173–1180CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maria V. Yelshanskaya
    • 1
  • Kei Saotome
    • 1
  • Minfen Li
    • 1
  • Alexander I. Sobolevsky
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations