Cell-Penetrating Peptides pp 89-106

Part of the Methods in Molecular Biology book series (MIMB, volume 1324) | Cite as

Determining the Effects of Membrane-Interacting Peptides on Membrane Integrity

Abstract

In the study of cell-penetrating and membrane-translocating peptides, a fundamental question occurs as to the contribution arising from fundamental peptide–membrane interactions, relative to the contribution arising from the biology and energy of the cell, mostly occurring in the form of endocytosis and subsequent events. A commonly used approach to begin addressing these mechanistic questions is to measure the degree to which peptides can interact with, and physically disrupt, the integrity of synthetic lipid bilayers. Here, we describe a set of experimental methods that can be used to measure the potency, kinetics, transience, and the effective size of peptide-induced membrane disruption.

Key words

Vesicle leakage Bilayer permeabilization Pore formation Leakage assay Terbium ANTS DPX Transient leakage Pore size 

References

  1. 1.
    Montrose K, Yang Y, Sun X, Wiles S, Krissansen GW (2013) Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Sci Rep 3:1661PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Dupont E, Prochiantz A, Joliot A (2011) Penetratin story: an overview. Methods Mol Biol 683:21–29CrossRefPubMedGoogle Scholar
  3. 3.
    Schmidt N, Mishra A, Lai GH, Wong GC (2010) Arginine-rich cell-penetrating peptides. FEBS Lett 584:1806–1813CrossRefPubMedGoogle Scholar
  4. 4.
    Chugh A, Eudes F, Shim YS (2010) Cell-penetrating peptides: nanocarrier for macromolecule delivery in living cells. IUBMB Life 62:183–193CrossRefPubMedGoogle Scholar
  5. 5.
    Said HF, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67:715–726CrossRefGoogle Scholar
  6. 6.
    Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    He J, Kauffman WB, Fuselier T, Naveen SK, Voss TG, Hristova K, Wimley WC (2013) Direct cytosolic delivery of polar cargo to cells by spontaneous membrane-translocating peptides. J Biol Chem 288:29974–29986PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    He J, Hristova K, Wimley WC (2012) A highly charged voltage sensor helix translocates spontaneously across membranes. Angew Chem Int Ed 51:7150–7153CrossRefGoogle Scholar
  9. 9.
    Marks JR, Placone J, Hristova K, Wimley WC (2011) Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc 133:8995–9004PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Ladokhin AS, Wimley WC, Hristova K, White SH (1997) Mechanism of leakage of contents of membrane vesicles determined by fluorescence requenching. Methods Enzymol 278:474–486CrossRefPubMedGoogle Scholar
  11. 11.
    Ladokhin AS, Wimley WC, White SH (1995) Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys J 69:1964–1971PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Rausch JM, Wimley WC (2001) A high-throughput screen for identifying transmembrane pore-forming peptides. Anal Biochem 293:258–263CrossRefPubMedGoogle Scholar
  13. 13.
    Krauson AJ, He J, Wimley WC (2012) Determining the mechanism of membrane permeabilizing peptides: identification of potent, equilibrium pore-formers. Biochim Biophys Acta 1818:1625–1632CrossRefPubMedGoogle Scholar
  14. 14.
    Wiedman G, Fuselier T, He J, Searson PC, Hristova K, Wimley WC (2014) Highly efficient macromolecule-sized poration of lipid bilayers by a synthetically evolved peptide. J Am Chem Soc 136:4724–4731PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239:27–34PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758:1529–1539CrossRefPubMedGoogle Scholar
  18. 18.
    Shai Y, Oren Z (2001) From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22:1629–1641CrossRefPubMedGoogle Scholar
  19. 19.
    Ladokhin AS, White SH (2001) ‘Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta 1514:253–260CrossRefPubMedGoogle Scholar
  20. 20.
    Wiedman G, Herman K, Searson P, Wimley WC, Hristova K (2013) The electrical response of bilayers to the bee venom toxin melittin: evidence for transient bilayer permeabilization. Biochim Biophys Acta 1828:1357–1364PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248CrossRefPubMedGoogle Scholar
  22. 22.
    Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2317CrossRefPubMedGoogle Scholar
  23. 23.
    Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728CrossRefPubMedGoogle Scholar
  24. 24.
    Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    White SH, Wimley WC, Ladokhin AS, Hristova K (1998) Protein folding in membranes: determining the energetics of peptide-bilayer interactions. Methods Enzymol 295:62–87CrossRefPubMedGoogle Scholar
  26. 26.
    Ladokhin AS, Jayasinghe S, White SH (2000) How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 285:235–245CrossRefPubMedGoogle Scholar
  27. 27.
    Parente RA, Nir S, Szoka F (1990) Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry 29:8720–8728CrossRefPubMedGoogle Scholar
  28. 28.
    Krauson AJ, He J, Wimley WC (2012) Gain-of-function analogues of the pore-forming peptide melittin selected by orthogonal high-throughput screening. J Am Chem Soc 134:12732–12741PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Hristova K, Selsted ME, White SH (1997) Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J Biol Chem 272:24224–24233CrossRefPubMedGoogle Scholar
  30. 30.
    Goñi FM, Ostolaza H (1998) E. coli a-hemolysin: a membrane-active protein toxin. Braz J Med Biol Res 31:1019–1034CrossRefPubMedGoogle Scholar
  31. 31.
    Ladokhin AS, Selsted ME, White SH (1997) Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J 72:1762–1766PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Nayar R, Hope MJ, Cullis PR (1989) Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique. Biochim Biophys Acta 986:200–206CrossRefGoogle Scholar
  33. 33.
    Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468PubMedGoogle Scholar
  34. 34.
    Stewart JC (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14CrossRefPubMedGoogle Scholar
  35. 35.
    Hristova K, Kenworthy AK, McIntosh TJ (1995) Effect of bilayer composition on the phase behavior of liposomal suspensions containing poly(ethylene glycol)-lipids. Macromolecules 28:7693–7699CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyTulane University School of MedicineNew OrleansUSA

Personalised recommendations