Computational Data Integration in Toxicogenomics

  • Simona Constantinescu
  • Shana J. Sturla
  • Giancarlo Marra
  • Bernd Wollscheid
  • Niko BeerenwinkelEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Toxicogenomics is an emerging field defined by the adaptation and application of functional genomics techniques to toxicology. Recent advances in generating and analyzing multi-omics data have facilitated the development of toxicogenomics to provide novel answers to many toxicology-related questions. In this chapter, we discuss five recent toxicogenomics studies presenting complementary strategies for mining genome-wide molecular profiling data after exposure of cells to chemicals in vitro. The case studies cover various areas of systems toxicology and pharmacogenomics and illustrate the rapid evolution of toxicogenomics, including computational methods for the analysis, integration, and interpretation of omics data.

Key words

Toxicogenomics Data integration Data analysis Cancer Pharmacogenomics Systems toxicology Cell line Case studies 



This work was financially supported by the Swiss National Science Foundation (Sinergia project 136247).


  1. 1.
    Nigsch F, Macaluso NM, Mitchell JB, Zmuidinavicius D (2009) Computational toxicology: an overview of the sources of data and of modelling methods. Expert Opin Drug Metab Toxicol 5(1):1–14CrossRefPubMedGoogle Scholar
  2. 2.
    Nuwaysir EF, Bittner M, Trent J et al (1999) Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinog 24(3):153–159CrossRefPubMedGoogle Scholar
  3. 3.
    Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5(12):936–948CrossRefPubMedGoogle Scholar
  4. 4.
    Gatzidou ET, Zira AN, Theocharis SE (2007) Toxicogenomics: a pivotal piece in the puzzle of toxicological research. J Appl Toxicol 27(4):302–309CrossRefPubMedGoogle Scholar
  5. 5.
    Sturla SJ, Boobis AR, FitzGerald RE et al (2014) Systems toxicology: from basic research to risk assessment. Chem Res Toxicol 27(3):314–329PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Ferté C, André F, Soria J-C (2010) Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol 7(7):367–380CrossRefPubMedGoogle Scholar
  7. 7.
    Macarron R, Banks MN, Bojanic D et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10(3):188–195CrossRefPubMedGoogle Scholar
  8. 8.
    Arrell D, Terzic A (2010) Network systems biology for drug discovery. Clin Pharmacol Ther 88(1):120–125CrossRefPubMedGoogle Scholar
  9. 9.
    Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31(1):2–8PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Constantinescu S, Hecht K, Sobotzki N et al (2014) Transcriptomic responses of cancerous and noncancerous human colon cells to sulforaphane and selenium. Chem Res Toxicol 27(3):377–386CrossRefPubMedGoogle Scholar
  11. 11.
    Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Wilmes A, Limonciel A, Aschauer L et al (2013) Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress. J Proteomics 79:180–194CrossRefPubMedGoogle Scholar
  13. 13.
    Barabasi A-L, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5(2):101–113CrossRefPubMedGoogle Scholar
  14. 14.
    Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21(9):1010–1024CrossRefPubMedGoogle Scholar
  15. 15.
    Gehlenborg N, O'Donoghue SI, Baliga NS et al (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68CrossRefPubMedGoogle Scholar
  16. 16.
    Pavlopoulos GA, O'Donoghue SI, Satagopam VP et al (2008) Arena3D: visualization of biological networks in 3D. BMC Syst Biol 2(1):104PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Theocharidis A, Van Dongen S, Enright AJ, Freeman TC (2009) Network visualization and analysis of gene expression data using BioLayout Express3D. Nat Protoc 4(10):1535–1550CrossRefPubMedGoogle Scholar
  18. 18.
    Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7(1):109PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) Cell designer: a process diagram editor for gene-regulatory and biochemical networks. BioSilico 1(5):159–162CrossRefGoogle Scholar
  20. 20.
    Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics 21(24):4432–4433CrossRefPubMedGoogle Scholar
  21. 21.
    Breitkreutz B-J, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4(3):R22PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Smoot ME, Ono K, Ruscheinski J et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Longabaugh WJ, Davidson EH, Bolouri H (2009) Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim Biophys Acta 1789:363–374PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Letunic I, Yamada T, Kanehisa M, Bork P (2008) iPath: interactive exploration of biochemical pathways and networks. Trends Biochem Sci 33:101–103CrossRefPubMedGoogle Scholar
  26. 26.
    Okuda S, Yamada T et al (2008) KEGG atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36:W423–W426PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Hu Z, Hung J-H, Wang Y et al (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res 37:W115–W121PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Warde-Farley D, Donaldson SL et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(suppl 2):W214–W220PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Barsky A, Gardy JL, Hancock RE, Munzner T (2007) Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23:1040–1042CrossRefPubMedGoogle Scholar
  30. 30.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Liberzon A, Subramanian A, Pinchback R et al (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12):1739–1740PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Väremo L, Nielsen J, Nookaew I (2013) Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 41(8):4378–4391PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449CrossRefPubMedGoogle Scholar
  35. 35.
    Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3CrossRefPubMedGoogle Scholar
  36. 36.
    Beißbarth T, Speed TP (2004) GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20(9):1464–1465CrossRefPubMedGoogle Scholar
  37. 37.
    Zheng Q, Wang X-J (2008) GOEAST: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 36(suppl 2):W358–W363PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Kong SW, Pu WT, Park PJ (2006) A multivariate approach for integrating genome-wide expression data and biological knowledge. Bioinformatics 22(19):2373–2380PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Hummel M, Meister R, Mansmann U (2008) GlobalANCOVA: exploration and assessment of gene group effects. Bioinformatics 24(1):78–85CrossRefPubMedGoogle Scholar
  40. 40.
    Tsai C-A, Chen JJ (2009) Multivariate analysis of variance test for gene set analysis. Bioinformatics 25(7):897–903CrossRefPubMedGoogle Scholar
  41. 41.
    Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273CrossRefPubMedGoogle Scholar
  42. 42.
    Roig AI, Eskiocak U, Hight SK et al (2010) Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro. Gastroenterology 138(3):1012–1021CrossRefPubMedGoogle Scholar
  43. 43.
    Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:3Google Scholar
  44. 44.
    Efron B, Tibshirani R (2007) On testing the significance of sets of genes. Ann Appl Stat 1(1):107–129CrossRefGoogle Scholar
  45. 45.
    Madan A, Dureja H (2012) Prediction of pharmacokinetic parameters. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol 929, Methods in molecular biology series. Springer, New York, NY, pp 337–357CrossRefGoogle Scholar
  46. 46.
    Chien JY, Friedrich S, Heathman MA et al (2005) Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation. AAPS J 7(3):E544–E559PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Czock D, Markert C, Hartman B, Keller F (2009) Pharmacokinetics and pharmacodynamics of antimicrobial drugs. Expert Opin Drug Metab Toxicol 5(5):475–487CrossRefPubMedGoogle Scholar
  48. 48.
    Bassingthwaighte JB, Butterworth E, Jardine B, Raymond GM (2012) Compartmental modeling in the analysis of biological systems computational toxicology. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol 929, Methods in molecular biology series. Springer, New York, NY, pp 391–438CrossRefGoogle Scholar
  49. 49.
    Gabrielsson J, Weiner D (2012) Non-compartmental analysis. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol 929, Methods in molecular biology series. Springer, New York, NY, pp 377–389CrossRefGoogle Scholar
  50. 50.
    Huisinga W, Telgmann R, Wulkow M (2006) The virtual laboratory approach to pharmacokinetics: design principles and concepts. Drug Discov Today 11(17):800–805CrossRefPubMedGoogle Scholar
  51. 51.
    von Kleist M, Huisinga W (2007) Physiologically based pharmacokinetic modelling: a sub-compartmentalized model of tissue distribution. J Pharmacokinet Pharmacodyn 34(6):789–806CrossRefGoogle Scholar
  52. 52.
    Gillespie WR (1991) Noncompartmental versus compartmental modelling in clinical pharmacokinetics. Clin Pharmacokinet 20(4):253–262CrossRefPubMedGoogle Scholar
  53. 53.
    Hamon J, Jennings P, Bois FY (2014) Systems biology modeling of omics data: effect of cyclosporine a on the Nrf2 pathway in human renal cells. BMC Syst Biol 8(1):76PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Emmel EA, Verweij CL et al (1989) Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 246:1617–1620CrossRefPubMedGoogle Scholar
  55. 55.
    Wieser M, Stadler G, Jennings P et al (2008) hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am J Physiol Renal Physiol 295(5):F1365–F1375CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang Q, Pi J, Woods CG, Andersen ME (2009) Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses. Toxicol Appl Pharmacol 237(3):345–356PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Bredel M, Jacoby E (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 5(4):262–275CrossRefPubMedGoogle Scholar
  58. 58.
    Hatzis C, Bedard PL, Birkbak NJ et al (2014) Enhancing reproducibility in cancer drug screening: how do we move forward? Cancer Res 74(15):4016–4023PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Garnett MJ, Edelman EJ, Heidorn SJ et al (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391):570–575PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Haibe-Kains B, El-Hachem N, Birkbak NJ et al (2013) Inconsistency in large pharmacogenomic studies. Nature 504(7480):389–393PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Malo N, Hanley JA, Cerquozzi S et al (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24(2):167–175CrossRefPubMedGoogle Scholar
  62. 62.
    Lin WM, Baker AC, Beroukhim R et al (2008) Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res 68(3):664–673CrossRefPubMedGoogle Scholar
  63. 63.
    Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Solit DB, Garraway LA, Pratilas CA et al (2005) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439(7074):358–362PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Sos ML, Michel K, Zander T et al (2009) Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions. J Clin Invest 119(6):1727–1740PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Staunton JE, Slonim DK, Coller HA et al (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A 98(19):10787–10792PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Barretina J, Caponigro G, Stransky N et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Beroukhim R, Mermel CH, Porter D et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Kohlmann A, Kipps TJ, Rassenti LZ et al (2008) An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: The Microarray Innovations in LEukemia study prephase. Br J Haematol 142(5):802–807PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Forbes S, Bhamra G, Bamford S et al (2008) The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet Chapter 10:Unit 10.11PubMedGoogle Scholar
  71. 71.
    Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B 67(2):301–320CrossRefGoogle Scholar
  72. 72.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc B 58(1):267–288Google Scholar
  73. 73.
    Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67CrossRefGoogle Scholar
  74. 74.
    Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976CrossRefPubMedGoogle Scholar
  75. 75.
    Larkin JE, Frank BC, Gavras H et al (2005) Independence and reproducibility across microarray platforms. Nat Methods 2(5):337–344CrossRefPubMedGoogle Scholar
  76. 76.
    Jang IS, Neto EC, Guinney J et al (2013) Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput 19:63–74Google Scholar
  77. 77.
    Jolliffe IT (1982) A note on the use of principal components in regression. Appl Stat 31:300–303CrossRefGoogle Scholar
  78. 78.
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58(2):109–130CrossRefGoogle Scholar
  79. 79.
    Balabin RM, Lomakina EI (2011) Support vector machine regression (SVR/LS-SVM)—an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 136(8):1703–1712CrossRefPubMedGoogle Scholar
  80. 80.
    Wu Y, Krishnan S (2011) Combining least-squares support vector machines for classification of biomedical signals: a case study with knee-joint vibroarthrographic signals. J Exp Theor Artif Intell 23(1):63–77CrossRefGoogle Scholar
  81. 81.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  82. 82.
    Hilbe JM (2011) Negative binomial regression. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  83. 83.
    Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Druker BJ, Guilhot F, O'Brien SG et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417CrossRefPubMedGoogle Scholar
  85. 85.
    King M-C, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302(5645):643–646CrossRefPubMedGoogle Scholar
  86. 86.
    Kwak EL, Bang Y-J, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    McDermott U, Sharma SV, Dowell L et al (2007) Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc Natl Acad Sci U S A 104(50):19936–19941PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94PubMedCentralCrossRefPubMedGoogle Scholar
  89. 89.
    Wang Y, Waters J, Leung ML et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512(7513):155–160PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Simona Constantinescu
    • 1
    • 2
  • Shana J. Sturla
    • 3
  • Giancarlo Marra
    • 4
  • Bernd Wollscheid
    • 3
    • 5
  • Niko Beerenwinkel
    • 1
    • 2
    Email author
  1. 1.Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
  2. 2.SIB Swiss Institute of BioinformaticsBaselSwitzerland
  3. 3.Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
  4. 4.Institute of Molecular Cancer ResearchUniversity of ZurichZurichSwitzerland
  5. 5.Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland

Personalised recommendations