Determination and Analysis of Cellular Metabolic Changes by Noncanonical Hedgehog Signaling

Part of the Methods in Molecular Biology book series (MIMB, volume 1322)


Hedgehog is a morphogen essential for body patterning and proper embryonic development from flies to humans. Thought quiescent in adults, its inappropriate reactivation is associated with many disparate genetic and sporadic types of human cancers. Recent findings have demonstrated a key, yet unexpected, role of the Hedgehog signaling pathway in metabolic control. Here, we describe a panel of methods to determine and analyze cellular and organismal metabolic changes downstream of the Hedgehog signaling pathway.

Key words

Hedgehog Metabolism Glucose uptake Calcium Ampk 



JAP acknowledges generous support from the DFG, ERC, EU-FP7, BMBF (DEEP), and the MPG.


  1. 1.
    Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4(1):39–49PubMedCrossRefGoogle Scholar
  2. 2.
    Aberger F, Ruiz I, Altaba A (2014) Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol 33:93–104PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Briscoe J, Thérond PP (2013) The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14(7):416–429PubMedCrossRefGoogle Scholar
  4. 4.
    Teperino R, Aberger F, Esterbauer H, Riobo N, Pospisilik JA (2014) Canonical and non-canonical hedgehog signalling and the control of metabolism. Semin Cell Dev Biol 33:81–92PubMedCrossRefGoogle Scholar
  5. 5.
    Mukhopadhyay S, Rohatgi R (2014) G-protein-coupled receptors, hedgehog signaling and primary cilia. Semin Cell Dev Biol 33:63–72PubMedCrossRefGoogle Scholar
  6. 6.
    Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–3087PubMedCrossRefGoogle Scholar
  7. 7.
    Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA (2012) Noncanonical hedgehog signaling. Vitam Horm 88:55–72PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Teperino R, Amann S, Bayer M, McGee SL, Loipetzberger A, Connor T et al (2012) Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell 151(2):414–426PubMedCrossRefGoogle Scholar
  9. 9.
    Amakye D, Jagani Z, Dorsch M (2013) Unraveling the therapeutic potential of the hedgehog pathway in cancer. Nat Med 19(11):1410–1422PubMedCrossRefGoogle Scholar
  10. 10.
    Mullor JL, Sánchez P, Ruiz i Altaba A (2002) Pathways and consequences: Hedgehog signaling in human disease. Trends Cell Biol 12(12):562–569PubMedCrossRefGoogle Scholar
  11. 11.
    Collins S, Martin TL, Surwit RS, Robidoux J (2004) Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav 81(2):243–248PubMedCrossRefGoogle Scholar
  12. 12.
    Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT, Zhang X et al (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140(1):148–160PubMedCrossRefGoogle Scholar
  14. 14.
    Gaster M, Kristensen SR, Beck-Nielsen H, Schrøder HD (2001) A cellular model system of differentiated human myotubes. APMIS 109(11):35–44Google Scholar
  15. 15.
    Gaster M, Schrøder HD, Handberg A, Beck-Nielsen H (2001) The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure. Biochim Biophys Acta 1537(3):211–221PubMedCrossRefGoogle Scholar
  16. 16.
    DeFronzo RA, Davidson JA, Del Prato S (2012) The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes Metab 14(1):5–14PubMedCrossRefGoogle Scholar
  17. 17.
    Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34(2–3):121–138PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Gaster M, Petersen I, Højlund K, Poulsen P, Beck-Nielsen H (2002) The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes 51(4):921–927PubMedCrossRefGoogle Scholar
  19. 19.
    Tsou P, Zheng B, Hsu CH, Sasaki AT, Cantley LC (2011) A fluorescent reporter of AMPK activity and cellular energy stress. Cell Metab 13(4):476–486PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Lipinski RJ, Hutson PR, Hannam PW, Nydza RJ, Washington IM, Moore RW et al (2008) Dose- and route-dependent teratogenicity, toxicity, and pharmacokinetic profiles of the hedgehog signaling antagonist cyclopamine in the mouse. Toxicol Sci 104(1):189–197PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Sakata N, Yoshimatsu G, Tsuchiya H, Egawa S, Unno M (2012) Animal models of diabetes mellitus for islet transplantation. Exp Diabetes Res 2012:256707PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Damasceno DC, Netto AO, Iessi IL, Gallego FQ, Corvino SB, Dallaqua B et al (2014) Streptozotocin-Induced diabetes models: pathophysiological mechanisms and fetal outcomes. Biomed Res Int 2014:819065PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Knauf C, Cani PD, Perrin C, Iglesias MA, Maury JF, Bernard E et al (2005) Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest 115(12):3554–3563PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Zebisch K, Voigt V, Wabitsch M, Brandsch M (2012) Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 425(1):88–90PubMedCrossRefGoogle Scholar
  25. 25.
    Rong JX, Klein JL, Qiu Y, Xie M, Johnson JH, Waters KM et al (2011) Rosiglitazone induces mitochondrial biogenesis in differentiated murine 3T3-L1 and C3H/10T1/2 adipocytes. PPAR Res 2011:179454PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hemmingsen M, Vedel S, Skafte-Pedersen P, Sabourin D, Collas P, Bruus H, Dufva M (2013) The role of paracrine and autocrine signaling in the early phase of adipogenic differentiation of adipose-derived stem cells. PLoS One 8(5):e63638PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Frerichs H, Ball EG (1964) Studies on the metabolism of adipose tissue. XVI. Inhibition by phlorizin and phloretin of the insulin-stimulated uptake of glucose. Biochemistry 3:981–985PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherberg, MunichGermany
  2. 2.Max Planck Institute of Immunobiology and EpigeneticsFreiburg im BreisgauGermany

Personalised recommendations