Preparation of Short 5′-Triphosphorylated Oligoribonucleotides for Crystallographic and Biochemical Studies

  • Nikita Vasilyev
  • Alexander Serganov
Part of the Methods in Molecular Biology book series (MIMB, volume 1320)


RNA molecules participate in virtually all cellular processes ranging from transfer of hereditary information to gene expression control. In cells, many RNAs form specific interactions with proteins often using short nucleotide sequences for protein recognition. Biochemical and structural studies of such RNA–protein complexes demand preparation of short RNAs. Although short RNAs can be synthesized chemically, certain proteins require monophosphate or triphosphate moieties on the 5′ end of RNA. Given high cost of chemical triphosphorylation, broad application of such RNAs is impractical. In vitro transcription of RNA by DNA-dependent bacteriophage T7 RNA polymerase provides an alternative option to prepare short RNAs with different phosphorylation states as well as modifications on the 5′ terminus. Here we outline the in vitro transcription methodology employed to prepare ≤5-mer oligoribonucleotide for structural and biochemical applications. The chapter describes the principles of construct design, in vitro transcription and RNA purification applied for characterization of a protein that targets the 5′ end of RNA.

Key words

Triphosphorylated RNA 5′ Modification Crystallization Ion-exchange chromato-graphy In vitro transcription 


  1. 1.
    Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690PubMedCrossRefGoogle Scholar
  2. 2.
    Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406PubMedCrossRefGoogle Scholar
  3. 3.
    Serganov A, Patel DJ (2008) Towards deciphering the principles underlying an mRNA recognition code. Curr Opin Struct Biol 18:120–129PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ma J-B, Yuan Y-R, Meister G et al (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Y, Ludwig J, Schuberth C et al (2010) Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 17:781–787PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kowalinski E, Lunardi T, McCarthy AA et al (2011) Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147:423–435PubMedCrossRefGoogle Scholar
  7. 7.
    Abbas YM, Pichlmair A, Górna MW et al (2013) Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins. Nature 494:60–64PubMedCrossRefGoogle Scholar
  8. 8.
    Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451:355–358PubMedCrossRefGoogle Scholar
  9. 9.
    Milligan JF, Groebe DR, Witherell GW et al (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Moroney SE, Piccirilli JA (1991) Abortive products as initiating nucleotides during transcription by T7 RNA polymerase. Biochemistry 30:10343–10349PubMedCrossRefGoogle Scholar
  11. 11.
    Kuzmine I, Martin CT (2001) Pre-steady-state kinetics of initiation of transcription by T7 RNA polymerase: a new kinetic model. J Mol Biol 305:559–566PubMedCrossRefGoogle Scholar
  12. 12.
    Martin CT, Muller DK, Coleman JE (1988) Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry 27:3966–3974PubMedCrossRefGoogle Scholar
  13. 13.
    Rong M, Durbin RK, McAllister WT (1998) Template strand switching by T7 RNA polymerase. J Biol Chem 273:10253–10260PubMedCrossRefGoogle Scholar
  14. 14.
    Pleiss JA, Derrick ML, Uhlenbeck OC (1998) T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 4:1313–1317PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Helm M, Brulé H, Giegé R et al (1999) More mistakes by T7 RNA polymerase at the 5′ ends of in vitro-transcribed RNAs. RNA 5:618–621PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Nacheva GA, Berzal-Herranz A (2003) Preventing nondesired RNA-primed RNA extension catalyzed by T7 RNA polymerase. Eur J Biochem 270:1458–1465PubMedCrossRefGoogle Scholar
  17. 17.
    Kao C, Zheng M, Rüdisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 5:1268–1272PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Schenborn ET, Mierendorf RC (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Price SR, Ito N, Oubridge C et al (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249:398–408PubMedCrossRefGoogle Scholar
  20. 20.
    Fechter P, Rudinger J, Giegé R et al (1998) Ribozyme processed tRNA transcripts with unfriendly internal promoter for T7 RNA polymerase: production and activity. FEBS Lett 436:99–103PubMedCrossRefGoogle Scholar
  21. 21.
    Schürer H, Lang K, Schuster J et al (2002) A universal method to produce in vitro transcripts with homogeneous 3′ ends. Nucleic Acids Res 30:e56PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Dunn JJ, Studier FW, Gottesman M (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 166:477–535PubMedCrossRefGoogle Scholar
  23. 23.
    Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  24. 24.
    Studier FW, Rosenberg AH, Dunn JJ et al (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUSA
  2. 2.Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUSA

Personalised recommendations