Helical Symmetry of Nucleic Acids: Obstacle or Help in Structure Solution?

  • Alexandre Urzhumtsev
  • Ludmila Urzhumtseva
  • Ulrich Baumann
Part of the Methods in Molecular Biology book series (MIMB, volume 1320)


Crystallographic molecular replacement method is the key tool to define an atomic structure of nucleic acids. Frequently nucleic acids are packed forming continuous helices in the crystal. This arrangement of individual molecules in “infinite” pseudo helical structures in crystal may be the reason why the molecular replacement fails to find a unique position of the search atomic model as the method requires. The Patterson function, calculated as a Fourier series with diffraction intensities, has auxiliary peaks for such a molecular packing. Those near the origin peak indicate the orientation of the helices. The coordinates of other peaks are related to the molecular position and the rotation angle between two such “infinite” helices. Thus, the peak analysis allows getting molecular position even without a search model. An intelligent selecting and averaging of the phase sets corresponding to multiple probable positions of the search model again result in a unique solution but in the form of a Fourier synthesis and not a model. This synthesis can be used then to build an atomic model as it is the case for usual phasing methods.

Key words

Nucleic acids Atomic structure Molecular replacement Pseudo helical symmetry Patterson analysis Multisolution approach Fourier maps 


  1. 1.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar
  2. 2.
    Arnold E, Himmel DM, Rossmann MG (2012) In: International tables for crystallography. Vol. F: crystallography of biological macromolecules. Wiley, Chichester, pp 333–366Google Scholar
  3. 3.
    Patterson AL (1935) A direct method for the determination of the components of interatomic distances in crystals. Z Kristallogr 90:517–542Google Scholar
  4. 4.
    Harker D (1936) The application of the three-dimensional Patterson method and the crystal structure of proustite, Ag3AsS3, and pyrargyrite, Ag3SbS3. J Chem Phys 4:381–390CrossRefGoogle Scholar
  5. 5.
    Franklin RE, Gosling RG (1953) The structure of sodium thymonucleate fibres. II. The cylindrically symmetrical Patterson function. Acta Cryst 6:678–685CrossRefGoogle Scholar
  6. 6.
    Franklin RE, Gosling RG (1955) The structure of sodium thymonucleate fibres. III. The three-dimensional Patterson function. Acta Cryst 8:151–156CrossRefGoogle Scholar
  7. 7.
    Kondo J, Urzhumtseva L, Urzhumtsev A (2008) Patterson-guided ab initio analysis of structures with helical symmetry. Acta Cryst D 64:1078–1091CrossRefGoogle Scholar
  8. 8.
    Kondo J, Westhof E (2008) The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates. Nucleic Acids Res 36:2654–2666PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Sobolev OV, Lunina NL, Lunin VY (2010) The use of cluster analysis methods for the study of a set of feasible solutions of the phase problem in biological crystallography. Comp Res Modelling 2:91–101 (russ)Google Scholar
  10. 10.
    Urzhumtsev A, Urzhumtseva L (2002) Multiple rotation function. Acta Cryst D 58:2066–2075CrossRefGoogle Scholar
  11. 11.
    Urzhumtseva L, Urzhumtsev A (2002) COMPANG : program for comparative analysis of rotation angles. J Appl Crystallogr 35:644–647CrossRefGoogle Scholar
  12. 12.
    Bühler A, Urzhumtseva L, Lunin VY, Urzhumtsev A (2009) Cluster analysis for phasing with molecular replacement. A feasibility study. Acta Cryst D 65:644–650CrossRefGoogle Scholar
  13. 13.
    Rodríguez DD, Grosse C, Himmel S, González C, de Ilarduya IM, Becker S, Sheldrick GM, Usón I (2009) Crystallographic ab initio protein structure solution below atomic resolution. Nat Methods 6:651–653PubMedCrossRefGoogle Scholar
  14. 14.
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) J Appl Crystallogr 40:658–674PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA, USA, http://www.pymol.org Google Scholar
  16. 16.
    Pan B, Mitra SN, Sundaralingam M (1998) Structure of a 16-mer RNA duplex r(GCAGACUUAAAUCUGC)2 with wobble C.A+ mismatches. J Mol Biol 283:977–984PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexandre Urzhumtsev
    • 1
  • Ludmila Urzhumtseva
    • 2
  • Ulrich Baumann
    • 3
  1. 1.Centre for Integrative Biology, Institute of Genetics and of Molecular and Cellular BiologyCNRS UMR 7104/INSERM U964/Université de StrasbourgIllkirch GraffenstadenFrance
  2. 2.Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRSUniversité de StrasbourgStrasbourgFrance
  3. 3.Institute of BiochemistryUniversity of CologneCologneGermany

Personalised recommendations