Applications of Yeast Surface Display for Protein Engineering

  • Gerald M. Cherf
  • Jennifer R. CochranEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1319)


The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine.

Key words

Yeast surface display Protein engineering Random mutagenesis DNA shuffling Affinity maturation Protein stability engineering Enzyme engineering 



Gerald M. Cherf is supported by the National Cancer Institute of the National Institutes of Health under Award Number F31CA186478, and funding from the Stanford Bioengineering Department. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    He M, Taussig MJ (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25:5132–5134PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94:12297–12302PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 91:9022–9026PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Mattheakis LC, Dias JM, Dower WJ (1996) Cell-free synthesis of peptide libraries displayed on polysomes. Methods Enzymol 267:195–207PubMedGoogle Scholar
  6. 6.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedCrossRefGoogle Scholar
  7. 7.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554PubMedCrossRefGoogle Scholar
  8. 8.
    Francisco JA, Campbell R, Iverson BL, Georgiou G (1993) Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc Natl Acad Sci U S A 90:10444–10448PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Ho M, Nagata S, Pastan I (2006) Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci U S A 103:9637–9642PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Beerli RR et al (2008) Isolation of human monoclonal antibodies by mammalian cell display. Proc Natl Acad Sci U S A 105:14336–14341PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ernst W et al (1998) Baculovirus surface display: construction and screening of a eukaryotic epitope library. Nucleic Acids Res 26:1718–1723PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557PubMedCrossRefGoogle Scholar
  13. 13.
    Kondo A, Ueda M (2004) Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64:28–40PubMedCrossRefGoogle Scholar
  14. 14.
    Boder ET, Wittrup KD (2000) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:430–444PubMedGoogle Scholar
  15. 15.
    Kapteyn JC, Van Den Ende H, Klis FM (1999) The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426:373–383PubMedCrossRefGoogle Scholar
  16. 16.
    Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11:4196–4206PubMedCentralPubMedGoogle Scholar
  17. 17.
    Lu CF et al (1995) Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128:333–340PubMedCrossRefGoogle Scholar
  18. 18.
    Koide S, Koide A, Lipovšek D (2012) Target-binding proteins based on the 10th human fibronectin type III domain (10Fn3). Methods Enzymol 503:135–156PubMedGoogle Scholar
  19. 19.
    Scholler N (2012) Selection of antibody fragments by yeast display. Methods Mol Biol 907:259–280PubMedGoogle Scholar
  20. 20.
    Zhao Q, Zhu Z, Dimitrov DS (2012) Yeast display of engineered antibody domains. Methods Mol Biol 899:73–84PubMedGoogle Scholar
  21. 21.
    Chao G et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768PubMedCrossRefGoogle Scholar
  22. 22.
    Feldhaus MJ et al (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170PubMedCrossRefGoogle Scholar
  23. 23.
    Miller KD, Pefaur NB, Baird CL (2008) Construction and screening of antigen targeted immune yeast surface display antibody libraries. Curr Protoc Cytom Chapter 4:Unit4.7Google Scholar
  24. 24.
    Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128PubMedCrossRefGoogle Scholar
  25. 25.
    De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87:1617–1631PubMedCrossRefGoogle Scholar
  26. 26.
    Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414PubMedCrossRefGoogle Scholar
  27. 27.
    VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16:31–37PubMedCrossRefGoogle Scholar
  28. 28.
    Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10:1303–1310PubMedCrossRefGoogle Scholar
  29. 29.
    Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97:10701–10705PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391PubMedCrossRefGoogle Scholar
  32. 32.
    Lipovsek D et al (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024–1041PubMedCrossRefGoogle Scholar
  33. 33.
    Holler PD et al (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci U S A 97:5387–5392PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Cochran JR, Kim Y-S, Lippow SM, Rao B, Wittrup KD (2006) Improved mutants from directed evolution are biased to orthologous substitutions. Protein Eng Des Sel 19:245–253PubMedCrossRefGoogle Scholar
  35. 35.
    Rao BM, Girvin AT, Ciardelli T, Lauffenburger DA, Wittrup KD (2003) Interleukin-2 mutants with enhanced alpha-receptor subunit binding affinity. Protein Eng 16:1081–1087PubMedCrossRefGoogle Scholar
  36. 36.
    Rao BM, Driver I, Lauffenburger DA, Wittrup KD (2005) High-affinity CD25-binding IL-2 mutants potently stimulate persistent T cell growth. Biochemistry 44:10696–10701PubMedCrossRefGoogle Scholar
  37. 37.
    Shpilman M et al (2011) Development and characterization of high affinity leptins and leptin antagonists. J Biol Chem 286:4429–4442PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kariolis MS et al (2014) An engineered Axl “decoy receptor” effectively silences the Gas6-Axl signaling axis. Nat Chem Biol 10:977–983PubMedCrossRefGoogle Scholar
  39. 39.
    Weiskopf K et al (2013) Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341:88–91PubMedCrossRefGoogle Scholar
  40. 40.
    Weiskopf K et al (2013) Improving macrophage responses to therapeutic antibodies by molecular engineering of SIRPα variants. Oncoimmunology 2:e25773PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Tasumi S et al (2009) High-affinity lamprey VLRA and VLRB monoclonal antibodies. Proc Natl Acad Sci U S A 106:12891–12896PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Walker LM, Bowley DR, Burton DR (2009) Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J Mol Biol 389:365–375PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Shembekar N et al (2013) Isolation of a high affinity neutralizing monoclonal antibody against 2009 pandemic H1N1 virus that binds at the “Sa” antigenic site. PLoS One 8:e55516PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Wozniak-Knopp G et al (2010) Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 23:289–297PubMedCrossRefGoogle Scholar
  45. 45.
    Rajpal A et al (2005) A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci U S A 102:8466–8471PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526:99–106PubMedCrossRefGoogle Scholar
  47. 47.
    Moore SJ, Cochran JR (2012) Engineering knottins as novel binding agents. Methods Enzymol 503:223–251PubMedGoogle Scholar
  48. 48.
    Gera N, Hussain M, Rao BM (2013) Protein selection using yeast surface display. Methods 60:15–26PubMedCrossRefGoogle Scholar
  49. 49.
    Silverman AP, Kariolis MS, Cochran JR (2011) Cystine-knot peptides engineered with specificities for α(IIb)β(3) or α(IIb)β(3) and α(v)β(3) integrins are potent inhibitors of platelet aggregation. J Mol Recognit 24:127–135PubMedCrossRefGoogle Scholar
  50. 50.
    Kimura RH, Levin AM, Cochran FV, Cochran JR (2009) Engineered cystine knot peptides that bind alphavbeta3, alphavbeta5, and alpha5beta1 integrins with low-nanomolar affinity. Proteins 77:359–369PubMedCrossRefGoogle Scholar
  51. 51.
    Silverman AP, Levin AM, Lahti JL, Cochran JR (2009) Engineered cystine-knot peptides that bind alpha(v)beta(3) integrin with antibody-like affinities. J Mol Biol 385:1064–1075PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Moore SJ, Leung CL, Norton HK, Cochran JR (2013) Engineering agatoxin, a cystine-knot peptide from spider venom, as a molecular probe for in vivo tumor imaging. PLoS One 8:e60498PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Kimura RH et al (2011) Functional mutation of multiple solvent-exposed loops in the Ecballium elaterium trypsin inhibitor-II cystine knot miniprotein. PLoS One 6:e16112PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Glotzbach B et al (2013) Combinatorial optimization of cystine-knot peptides towards high-affinity inhibitors of human matriptase-1. PLoS One 8:e76956PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Koide A, Bailey CW, Huang X, Koide S (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 284:1141–1151PubMedCrossRefGoogle Scholar
  56. 56.
    Lipovsek D (2011) Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel 24:3–9PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Bloom L, Calabro V (2009) FN3: a new protein scaffold reaches the clinic. Drug Discov Today 14:949–955PubMedCrossRefGoogle Scholar
  58. 58.
    Pavoor TV, Cho YK, Shusta EV (2009) Development of GFP-based biosensors possessing the binding properties of antibodies. Proc Natl Acad Sci U S A 106:11895–11900PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Lee C-H et al (2010) Engineering of a human kringle domain into agonistic and antagonistic binding proteins functioning in vitro and in vivo. Proc Natl Acad Sci U S A 107:9567–9571PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Gera N, Hussain M, Wright RC, Rao BM (2011) Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J Mol Biol 409:601–616PubMedCrossRefGoogle Scholar
  61. 61.
    Puri V, Streaker E, Prabakaran P, Zhu Z, Dimitrov DS (2013) Highly efficient selection of epitope specific antibody through competitive yeast display library sorting. MAbs 5:533–539PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956PubMedCrossRefGoogle Scholar
  63. 63.
    Kowalski JM, Parekh RN, Wittrup KD (1998) Secretion efficiency in Saccharomyces cerevisiae of bovine pancreatic trypsin inhibitor mutants lacking disulfide bonds is correlated with thermodynamic stability. Biochemistry 37:1264–1273PubMedCrossRefGoogle Scholar
  64. 64.
    Kowalski JM, Parekh RN, Mao J, Wittrup KD (1998) Protein folding stability can determine the efficiency of escape from endoplasmic reticulum quality control. J Biol Chem 273:19453–19458PubMedCrossRefGoogle Scholar
  65. 65.
    Shusta EV, Holler PD, Kieke MC, Kranz DM, Wittrup KD (2000) Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 18:754–759PubMedCrossRefGoogle Scholar
  66. 66.
    Kim Y-S, Bhandari R, Cochran JR, Kuriyan J, Wittrup KD (2006) Directed evolution of the epidermal growth factor receptor extracellular domain for expression in yeast. Proteins 62:1026–1035PubMedCrossRefGoogle Scholar
  67. 67.
    Esteban O, Zhao H (2004) Directed evolution of soluble single-chain human class II MHC molecules. J Mol Biol 340:81–95PubMedCrossRefGoogle Scholar
  68. 68.
    Traxlmayr MW, Obinger C (2012) Directed evolution of proteins for increased stability and expression using yeast display. Arch Biochem Biophys 526:174–180PubMedCrossRefGoogle Scholar
  69. 69.
    Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191PubMedCrossRefGoogle Scholar
  70. 70.
    Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894PubMedCrossRefGoogle Scholar
  71. 71.
    Park S et al (2006) Limitations of yeast surface display in engineering proteins of high thermostability. Protein Eng Des Sel 19:211–217PubMedCrossRefGoogle Scholar
  72. 72.
    Pavoor TV, Wheasler JA, Kamat V, Shusta EV (2012) An enhanced approach for engineering thermally stable proteins using yeast display. Protein Eng Des Sel 25:625–630PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Traxlmayr MW et al (2012) Directed evolution of stabilized IgG1-Fc scaffolds by application of strong heat shock to libraries displayed on yeast. Biochim Biophys Acta 1824:542–549PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Traxlmayr MW et al (2013) Directed evolution of Her2/neu-binding IgG1-Fc for improved stability and resistance to aggregation by using yeast surface display. Protein Eng Des Sel 26:255–265PubMedCrossRefGoogle Scholar
  75. 75.
    Jones DS, Tsai P-C, Cochran JR (2011) Engineering hepatocyte growth factor fragments with high stability and activity as Met receptor agonists and antagonists. Proc Natl Acad Sci U S A 108:13035–13040PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Schweickhardt RL, Jiang X, Garone LM, Brondyk WH (2003) Structure-expression relationship of tumor necrosis factor receptor mutants that increase expression. J Biol Chem 278:28961–28967PubMedCrossRefGoogle Scholar
  77. 77.
    Buonpane RA, Moza B, Sundberg EJ, Kranz DM (2005) Characterization of T cell receptors engineered for high affinity against toxic shock syndrome toxin-1. J Mol Biol 353:308–321PubMedCrossRefGoogle Scholar
  78. 78.
    Jones LL et al (2006) Engineering and characterization of a stabilized alpha1/alpha2 module of the class I major histocompatibility complex product Ld. J Biol Chem 281:25734–25744PubMedCrossRefGoogle Scholar
  79. 79.
    Weber KS, Donermeyer DL, Allen PM, Kranz DM (2005) Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function. Proc Natl Acad Sci U S A 102:19033–19038PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Henke E, Bornscheuer UT (1999) Directed evolution of an esterase from Pseudomonas fluorescens. Random mutagenesis by error-prone PCR or a mutator strain and identification of mutants showing enhanced enantioselectivity by a resorufin-based fluorescence assay. Biol Chem 380:1029–1033PubMedCrossRefGoogle Scholar
  81. 81.
    Sroga GE, Dordick JS (2001) Generation of a broad esterolytic subtilisin using combined molecular evolution and periplasmic expression. Protein Eng 14:929–937PubMedCrossRefGoogle Scholar
  82. 82.
    Stevenson BJ, Yip SH-C, Ollis DL (2013) In vitro directed evolution of enzymes expressed by E. coli in microtiter plates. Methods Mol Biol 978:237–249PubMedGoogle Scholar
  83. 83.
    Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656PubMedCrossRefGoogle Scholar
  84. 84.
    Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J 22:24–35PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Lipovsek D et al (2007) Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 14:1176–1185PubMedCrossRefGoogle Scholar
  86. 86.
    Antipov E, Cho AE, Wittrup KD, Klibanov AM (2008) Highly L and D enantioselective variants of horseradish peroxidase discovered by an ultrahigh-throughput selection method. Proc Natl Acad Sci U S A 105:17694–17699PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108:11399–11404PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Fushimi T et al (2013) Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering. Appl Microbiol Biotechnol 97:4003–4011PubMedCrossRefGoogle Scholar
  89. 89.
    Han S, Zhang J, Han Z, Zheng S, Lin Y (2011) Combination of site-directed mutagenesis and yeast surface display enhances Rhizomucor miehei lipase esterification activity in organic solvent. Biotechnol Lett 33:2431–2438PubMedCrossRefGoogle Scholar
  90. 90.
    Zhang K et al (2013) Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display. Chem Biol 20:92–101PubMedCrossRefGoogle Scholar
  91. 91.
    White KA, Zegelbone PM (2013) Directed evolution of a probe ligase with activity in the secretory pathway and application to imaging intercellular protein-protein interactions. Biochemistry. doi: 10.1021/bi400268m Google Scholar
  92. 92.
    Yi L et al (2013) Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proc Natl Acad Sci U S A 110:7229–7234PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Steffens DL, Williams JGK (2007) Efficient site-directed saturation mutagenesis using degenerate oligonucleotides. J Biomol Tech 18:147–149PubMedCentralPubMedGoogle Scholar
  94. 94.
    Cochran JR, Kim Y-S, Olsen MJ, Bhandari R, Wittrup KD (2004) Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods 287:147–158PubMedCrossRefGoogle Scholar
  95. 95.
    Chao G, Cochran JR, Wittrup KD (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342:539–550PubMedCrossRefGoogle Scholar
  96. 96.
    Boersma YL, Chao G, Steiner D, Wittrup KD, Plückthun A (2011) Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J Biol Chem 286:41273–41285PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Han T et al (2011) Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem Biophys Res Commun 409:253–259PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Mata-Fink J et al (2013) Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 425:444–456PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Pepper LR, Cho YK, Boder ET, Shusta EV (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11:127–134PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–473PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Bidlingmaier S, Liu B (2006) Construction and application of a yeast surface-displayed human cDNA library to identify post-translational modification-dependent protein-protein interactions. Mol Cell Proteomics 5:533–540PubMedCrossRefGoogle Scholar
  102. 102.
    Bidlingmaier S et al (2009) Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. Cancer Res 69:1570–1577PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Bidlingmaier S, Liu B (2007) Interrogating yeast surface-displayed human proteome to identify small molecule-binding proteins. Mol Cell Proteomics 6:2012–2020PubMedCrossRefGoogle Scholar
  104. 104.
    Kondo A, Tanaka T, Hasunuma T, Ogino C (2010) Applications of yeast cell-surface display in bio-refinery. Recent Pat Biotechnol 4:226–234PubMedCrossRefGoogle Scholar
  105. 105.
    Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591PubMedCrossRefGoogle Scholar
  106. 106.
    Fujita Y et al (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143PubMedCrossRefGoogle Scholar
  108. 108.
    Shigechi H et al (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase. Appl Environ Microbiol 70:5037–5040PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Tsai S-L, DaSilva NA, Chen W (2013) Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2:14–21PubMedCrossRefGoogle Scholar
  110. 110.
    Kim S, Baek S-H, Lee K, Hahn J-S (2013) Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 12:14PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Tsai S-L, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6087–6093PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Tsai S-L, Goyal G, Chen W (2010) Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol 76:7514–7520PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Pan X-X et al (2012) Efficient display of active Geotrichum sp. lipase on Pichia pastoris cell wall and its application as a whole-cell biocatalyst to enrich EPA and DHA in fish oil. J Agric Food Chem 60:9673–9679PubMedCrossRefGoogle Scholar
  115. 115.
    Kim S, Oh D-B, Kwon O, Kang HA (2010) Construction of an in vitro trans-sialylation system: surface display of Corynebacterium diphtheriae sialidase on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:893–903PubMedCrossRefGoogle Scholar
  116. 116.
    Wang H et al (2013) Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application. Anal Chem 85:6107–6112PubMedCrossRefGoogle Scholar
  117. 117.
    Ren R et al (2007) Display of adenoregulin with a novel Pichia pastoris cell surface display system. Mol Biotechnol 35:103–108PubMedCrossRefGoogle Scholar
  118. 118.
    Jo J-H, Im E-M, Kim S-H, Lee H-H (2011) Surface display of human lactoferrin using a glycosylphosphatidylinositol-anchored protein of Saccharomyces cerevisiae in Pichia pastoris. Biotechnol Lett 33:1113–1120PubMedCrossRefGoogle Scholar
  119. 119.
    Shibasaki S et al (2013) An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog Dis 69:262–268PubMedCrossRefGoogle Scholar
  120. 120.
    Tamaru Y et al (2006) Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: a first step for the development of an oral vaccine. Biotechnol Prog 22:949–953PubMedCrossRefGoogle Scholar
  121. 121.
    Wasilenko JL, Sarmento L, Spatz S, Pantin-Jackwood M (2010) Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using alpha-agglutinin for production of oral vaccines. Biotechnol Prog 26:542–547PubMedGoogle Scholar
  122. 122.
    Kotrba P, Ruml T (2010) Surface display of metal fixation motifs of bacterial P1-type ATPases specifically promotes biosorption of Pb(2+) by Saccharomyces cerevisiae. Appl Environ Microbiol 76:2615–2622PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701PubMedCrossRefGoogle Scholar
  124. 124.
    Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186PubMedCrossRefGoogle Scholar
  125. 125.
    Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264PubMedCrossRefGoogle Scholar
  126. 126.
    Kuroda K, Nishitani T, Ueda M (2012) Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 96:153–159PubMedCrossRefGoogle Scholar
  127. 127.
    Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463PubMedCrossRefGoogle Scholar
  128. 128.
    Nishitani T, Shimada M, Kuroda K, Ueda M (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–648PubMedCrossRefGoogle Scholar
  129. 129.
    Midelfort KS et al (2004) Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody. J Mol Biol 343:685–701PubMedCrossRefGoogle Scholar
  130. 130.
    Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BioengineeringStanford UniversityStanfordUSA
  2. 2.Department of Chemical EngineeringStanford UniversityStanfordUSA

Personalised recommendations