Design and Selection of Antisense Oligonucleotides Targeting Transforming Growth Factor Beta (TGF-β) Isoform mRNAs for the Treatment of Solid Tumors

  • Frank Jaschinski
  • Hanna Korhonen
  • Michel JanicotEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1317)


Transforming growth factor beta isoforms (TGF-β1, -β2, and -β3) are cytokines associated with a wide range of biological processes in oncology including tumor cell invasion and migration, angiogenesis, immunosuppression, as well as regulation of tumor stem cell properties. Hence, blocking the TGF-β signaling pathways may have a multifold therapeutic benefit for the treatment of solid tumors. Here, we describe the identification and selection processes for the development of highly potent and selective chemically modified antisense oligodeoxynucleotides (fully phosphorothioate locked nucleic acid gapmers) allowing effective and selective suppression of TGF-β isoform expression in cell-based assays and in vivo preclinical models.

Key words

Transforming growth factor beta Antisense oligonucleotides Locked nucleic acid gapmers 



The authors wish to acknowledge and recognize superb technical and scientific support from Marcus Kielmanowicz, Axolabs GmbH (Kulmbach, Germany), and Oncodesign (Dijon, France).


  1. 1.
    Moustakas A, Miyazawa K (2013) TGF-β in human diseases. SpringerGoogle Scholar
  2. 2.
    Sheen YY, Kim MJ, Park SA et al (2013) Targeting the transforming growth factor-β signaling in cancer therapy. Biomol Ther 21:323–331CrossRefGoogle Scholar
  3. 3.
    Hinck AP, Archer SJ, Qian SW et al (1996) Transforming growth factor beta 1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor beta 2. Biochemistry 35:8517–8534PubMedCrossRefGoogle Scholar
  4. 4.
    Hinck AP, O’Connor-McCourt MD (2011) Structures of TGF-β receptor complexes: implications for function and therapeutic intervention using ligand traps. Curr Pharm Biotechnol 12:2081–2098PubMedCrossRefGoogle Scholar
  5. 5.
    Hinck AP (2012) Structural studies of the TGF-βs and their receptors—insights into evolution of the TGF-β superfamily. FEBS Lett 586:1860–1870PubMedCrossRefGoogle Scholar
  6. 6.
    Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligonucleotide. Proc Natl Acad Sci U S A 75:280–284PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Koch T (2013) LNA antisense: a review. Curr Phys Chem 3:55–68CrossRefGoogle Scholar
  8. 8.
    Obika S, Morio JA, Nanbu D et al (1997) Synthesis and conformation of 3′-O,4′-C-methyleneribonucleosides, novel bicyclic nucleoside analogues for 2′,5′-linked oligonucleotide modification. Chem Commun 1643–1644Google Scholar
  9. 9.
    Wengel J (1999) Synthesis of 3′-C- and 4′-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc Chem Res 32:301–310CrossRefGoogle Scholar
  10. 10.
    Sohail M, Southern EM (2000) Selecting optimal antisense reagents. Adv Drug Deliv Rev 44:23–34PubMedCrossRefGoogle Scholar
  11. 11.
    Smith L, Andersen KB, Hovgaard L et al (2000) Rational selection of antisense oligonucleotide sequences. Eur J Pharm Sci 11:191–198PubMedCrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
  15. 15.
    Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M et al (1975) Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15:741–747PubMedCrossRefGoogle Scholar
  16. 16.
    Thiede MA, Strewler GJ, Nissenson RA, Rosenblatt M et al (1988) Human renal carcinoma expresses two messages encoding a parathyroid hormone-like peptide: evidence for the alternative splicing of a single- copy gene. Proc Natl Acad Sci U S A 85:4605–4609PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Bates PJ, Kahlon JB, Thomas SD et al (1999) Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J Biol Chem 274:26369–26377PubMedCrossRefGoogle Scholar
  18. 18.
    Vollmer J, Jepsen JS, Uhlmann E, Schetter C et al (2004) Modulation of CpG oligodeoxynucleotide-mediated immune stimulation by locked nucleic acid (LNA). Oligonucleotides 14:23–31PubMedCrossRefGoogle Scholar
  19. 19.
    Grünweller A, Wyszko E, Bieber B, Jahnel R et al (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43:13233–13241PubMedCrossRefGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
    Souleimanian N, Deleavey GF, Soifer H, Wang S et al (2012) Antisense 2′-deoxy, 2′-fluoroarabino nucleic acid (2′F-ANA) oligonucleotides: in vitro gymnotic silencers of gene expression whose potency is enhanced by fatty acids. Mol Ther Nucleic Acids 1:e43PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Stein CA, Hansen JB, Lai J, Wu S et al (2010) Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 38:e3PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Swayze EE, Siwkowski AM, Wancewicz EV, Migawa MT et al (2007) Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 35:687–700PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hagedorn PH, Yakimov V, Ottosen S, Kammler S et al (2013) Hepatotoxic potential of therapeutic oligonucleotides can be predicted from their sequence and modification pattern. Nucleic Acid Ther 23:302–310PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Soifer HS, Koch T, Lai J, Hansen B et al (2012) Silencing of gene expression by gymnotic delivery of antisense oligonucleotides. Methods Mol Biol 815:333–346PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Frank Jaschinski
    • 1
  • Hanna Korhonen
    • 1
  • Michel Janicot
    • 1
    Email author
  1. 1.Isarna Therapeutics. Preclinical Research and Development DepartmentMunichGermany

Personalised recommendations