A Newborn Piglet Survival Model of Post-hemorrhagic Ventricular Dilatation (PHVD)

  • Kristian Aquilina
  • Marianne Thoresen
Part of the Neuromethods book series (NM, volume 104)


Intra-ventricular hemorrhage (IVH) and post-hemorrhagic ventricular dilatation (PHVD) are important issues in neonatal care and continue to contribute to significant motor and cognitive morbidity. Several questions about its pathophysiology remain unanswered and animal models have been useful in identifying relevant risk factors and potential mechanisms. In this chapter, we describe a neonatal piglet model of IVH and PHVD involving the injection of homologous blood with an elevated hematocrit into the ventricular system. The animals are capable of long-term survival and, through a ventricular access device inserted in the second week, allow repeated aspiration of cerebrospinal fluid and measurement of intraventricular pressure.

Key words

Pig Newborn Neonatal intraventricular hemorrhage Post-hemorrhagic ventricular dilatation Hydrocephalus Ventricular access device Intraventricular pressure monitoring 


  1. 1.
    Pople IK, Bayston R, Hayward RD (1992) Infection of cerebrospinal fluid shunts in infants: a study of etiological factors. J Neurosurg 77(1):29–36CrossRefPubMedGoogle Scholar
  2. 2.
    Volpe JJ (1989) Intraventricular hemorrhage and brain injury in the premature infant. Neuropathology and pathogenesis. Clin Perinatol 16(2):361–386PubMedGoogle Scholar
  3. 3.
    Larroche JC (1972) Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol Neonate 20(3):287–299CrossRefPubMedGoogle Scholar
  4. 4.
    Cherian S et al (2004) The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol 14(3):305–311CrossRefPubMedGoogle Scholar
  5. 5.
    Whitelaw A, Kennedy CR, Brion LP (2001) Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. Cochrane Database Syst Rev 2, CD002270PubMedGoogle Scholar
  6. 6.
    Whitelaw A (2000) Repeated lumbar or ventricular punctures for preventing disability or shunt dependence in newborn infants with intraventricular hemorrhage. Cochrane Database Syst Rev 2, CD000216PubMedGoogle Scholar
  7. 7.
    Whitelaw A et al (2007) Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid. Pediatrics 119(5):e1071–e1078CrossRefPubMedGoogle Scholar
  8. 8.
    Balasubramaniam J, Del Bigio MR (2006) Animal models of germinal matrix hemorrhage. J Child Neurol 21(5):365–371PubMedGoogle Scholar
  9. 9.
    Del Bigio MR, Zhang YW (1998) Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 154(1):157–169CrossRefPubMedGoogle Scholar
  10. 10.
    Khan OH, Enno TL, Del Bigio MR (2006) Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol 200(2):311–320CrossRefPubMedGoogle Scholar
  11. 11.
    Xue M et al (2003) Periventricular/intraventricular hemorrhage in neonatal mouse cerebrum. J Neuropathol Exp Neurol 62(11):1154–1165PubMedGoogle Scholar
  12. 12.
    Goddard J et al (1980) Intraventricular hemorrhage–an animal model. Biol Neonate 37(1–2):39–52CrossRefPubMedGoogle Scholar
  13. 13.
    Mayfrank L et al (2000) Morphological changes following experimental intraventricular haemorrhage and intraventricular fibrinolytic treatment with recombinant tissue plasminogen activator. Acta Neuropathol 100(5):561–567CrossRefPubMedGoogle Scholar
  14. 14.
    Wagner KR et al (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23(6):629–652CrossRefPubMedGoogle Scholar
  15. 15.
    Aquilina K et al (2007) A neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg 107(2 Suppl):126–136PubMedGoogle Scholar
  16. 16.
    Thoresen M et al (1996) A piglet survival model of posthypoxic encephalopathy. Pediatr Res 40(5):738–748CrossRefPubMedGoogle Scholar
  17. 17.
    Davies MW et al (2000) Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatal Ed 82(3):F218–F223PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Aquilina A et al (2011) Preliminary evaluation of a novel intraparenchymal capacitive intracranial pressure monitor. J Neurosurg 115(3):561–569 (manuscript number JNS10 - 1920)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Clinical SciencesUniversity of BristolBristolUK
  2. 2.Department of Pediatric NeurosurgeryGreat Ormond Street HospitalLondonUK
  3. 3.Division of Physiology at Institute of Basic Medical SciencesUniversity of OsloOsloNorway
  4. 4.School of Clinical Sciences, St Michaels Hospital, Child Health, Level DUniversity of BristolBristolUK

Personalised recommendations