Parallel Donor Genotyping for 46 Selected Blood Group and 4 Human Platelet Antigens Using High-Throughput MALDI-TOF Mass Spectrometry

Part of the Methods in Molecular Biology book series (MIMB, volume 1310)


Most blood group antigens are defined by single nucleotide polymorphisms (SNPs). Highly accurate MALDI-TOF MS has proven its potential in SNP genotyping and was therefore chosen for blood donor oriented genotyping with high-throughput capability, e.g., 380 samples per day. The Select Module covers a total of 36 SNPs in two single-tube reactions, representative of 46 blood group and 4 human platelet antigens. Using this tool, confirmatory blood group typing for RhD, RhCE, Kell, Kidd, Duffy, MN, Ss, and selected rare antigens is performed on a routine basis.

Key words

Blood group gene Blood group genotyping High-throughput SNP typing MALDI-TOF MS Kell Kidd Duffy MNSs Rare blood group antigens Blood donor 



Financial support for the development of the Select Module was granted by the Humanitarian Foundation of the Swiss Red Cross (SRC); the Blood Transfusion Service Zurich, SRC, Switzerland and the Swiss blood transfusion umbrella organization Blutspende SRK Schweiz, Bern, Switzerland. SM, NT, and BMF are employees of the Blood Transfusion Service Zurich, SRC, Switzerland, and have not disclosed any conflicts of interest. CG is employee of the Blood Transfusion Service Zurich, SRC, Switzerland, and acts as a consultant for Inno-Train GmbH, Kronberg im Taunus, Germany.


  1. 1.
    Daniels G (2013) Human blood groups, 3rd edn. Blackwell Science, OxfordCrossRefGoogle Scholar
  2. 2.
  3. 3.
    Denomme GA, Johnson ST, Pietz BC (2011) Mass-scale red cell genotyping of blood donors. Transfus Apher Sci 44:93–99CrossRefPubMedGoogle Scholar
  4. 4.
    Halverson GR, Peyrard T (2010) A review of the Colton blood group system. Immunohematology 26:22–26PubMedGoogle Scholar
  5. 5.
    Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990) Molecular genetic basis of the histo-blood group ABO system. Nature 345:229–233CrossRefPubMedGoogle Scholar
  6. 6.
    dbSNP, NCBI Build 138, Phase I [database on the Internet] (2013)
  7. 7.
    Mouro I, Colin Y, Cherif-Zahar B, Cartron JP, Le Van Kim C (1993) Molecular genetic basis of the human Rhesus blood group system. Nat Genet 5:62–65CrossRefPubMedGoogle Scholar
  8. 8.
    Reid ME (2009) MNS blood group system: a review. Immunohematology 25:95–101PubMedGoogle Scholar
  9. 9.
    Gassner C, Schmarda A, Kilga-Nogler S, Jenny-Feldkircher B, Rainer E, Muller TH et al (1997) RHD/CE typing by polymerase chain reaction using sequence-specific primers. Transfusion 37:1020–1026CrossRefPubMedGoogle Scholar
  10. 10.
    Wagner FF, Gassner C, Muller TH, Schonitzer D, Schunter F, Flegel WA (1998) Three molecular structures cause rhesus D category VI phenotypes with distinct immunohematologic features. Blood 91:2157–2168PubMedGoogle Scholar
  11. 11.
    Wagner FF, Frohmajer A, Flegel WA (2001) RHD positive haplotypes in D negative Europeans. BMC Genet 2:10CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Gassner C, Utz I, Schennach H, Ramoni A, Steiner H, Scholz S et al (2013) Novel RHD alleles with weak hemagglutination and genetic Exon 9 diversity: weak D Types 45.1, 75, and 76. Transfusion 53(Suppl 2):2954–2959PubMedGoogle Scholar
  13. 13.
    Amado M, Bennett EP, Carneiro F, Clausen H (2000) Characterization of the histo-blood group O(2) gene and its protein product. Vox Sang 79:219–226CrossRefPubMedGoogle Scholar
  14. 14.
    Kormoczi GF, Wagner T, Jungbauer C, Vadon M, Ahrens N, Moll W et al (2007) Genetic diversity of KELnull and KELel: a nationwide Austrian survey. Transfusion 47:703–714CrossRefPubMedGoogle Scholar
  15. 15.
    Saison C, Helias V, Ballif BA, Peyrard T, Puy H, Miyazaki T et al (2012) Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet 44:174–177CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Zelinski T, Coghlan G, Liu XQ, Reid ME (2012) ABCG2 null alleles define the Jr(a-) blood group phenotype. Nat Genet 44:131–132CrossRefPubMedGoogle Scholar
  17. 17.
    Helias V, Saison C, Ballif BA, Peyrard T, Takahashi J, Takahashi H et al (2012) ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis. Nat Genet 44:170–173CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Haer-Wigman L, Ji Y, Loden M, de Haas M, van der Schoot CE, Veldhuisen B (2013) Comprehensive genotyping for 18 blood group systems using a multiplex ligation-dependent probe amplification assay shows a high degree of accuracy. Transfusion 53(Suppl 2):2899–2909PubMedGoogle Scholar
  19. 19.
    Gowland P, Gassner C, Hustinx H, Stolz M, Gottschalk J, Tissot JD et al (2014) Molecular RHD screening of RhD negative donors can replace standard serological testing for RhD negative donors. Transfus Apher Sci 50:163–168CrossRefPubMedGoogle Scholar
  20. 20.
    Tang K, Fu D, Kotter S, Cotter RJ, Cantor CR, Koster H (1995) Matrix-assisted laser desorption/ionization mass spectrometry of immobilized duplex DNA probes. Nucleic Acids Res 23:3126–3131CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Jurinke C, van den Boom D, Cantor CR, Koster H (2002) The use of MassARRAY technology for high throughput genotyping. Adv Biochem Eng Biotechnol 77:57–74PubMedGoogle Scholar
  22. 22.
    Li Y, Wenzel F, Holzgreve W, Hahn S (2006) Genotyping fetal paternally inherited SNPs by MALDI-TOF MS using cell-free fetal DNA in maternal plasma: influence of size fractionation. Electrophoresis 27:3889–3896CrossRefPubMedGoogle Scholar
  23. 23.
    Fumagalli D, Gavin PG, Taniyama Y, Kim SI, Choi HJ, Paik S et al (2010) A rapid, sensitive, reproducible and cost-effective method for mutation profiling of colon cancer and metastatic lymph nodes. BMC Cancer 10:101CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Garritsen HS, Xiu-Cheng Fan A, Lenz D, Hannig H, Yan Zhong X, Geffers R et al (2009) Molecular diagnostics in transfusion medicine: in capillary, on a chip, in silico, or in flight? Transfus Med Hemother 36:181–187CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Vivante A, Amariglio N, Koren-Michowitz M, Ashur-Fabian O, Nagler A, Rechavi G et al (2007) High-throughput, sensitive and quantitative assay for the detection of BCR-ABL kinase domain mutations. Leukemia 21:1318–1321CrossRefPubMedGoogle Scholar
  26. 26.
    Cerezo M, Cerny V, Carracedo A, Salas A (2009) Applications of MALDI-TOF MS to large-scale human mtDNA population-based studies. Electrophoresis 30:3665–3673CrossRefPubMedGoogle Scholar
  27. 27.
    Xiu-Cheng Fan A, Garritsen HS, Tarhouny SE, Morris M, Hahn S, Holzgreve W et al (2008) A rapid and accurate approach to identify single nucleotide polymorphisms of mitochondrial DNA using MALDI-TOF mass spectrometry. Clin Chem Lab Med 46:299–305CrossRefPubMedGoogle Scholar
  28. 28.
    Jaremko M, Justenhoven C, Abraham BK, Schroth W, Fritz P, Brod S et al (2005) MALDI-TOF MS and TaqMan assisted SNP genotyping of DNA isolated from formalin-fixed and paraffin-embedded tissues (FFPET). Hum Mutat 25:232–238CrossRefPubMedGoogle Scholar
  29. 29.
    Docherty SJ, Davis OS, Haworth CM, Plomin R, Mill J (2010) DNA methylation profiling using bisulfite-based epityping of pooled genomic DNA. Methods 52:255–258CrossRefPubMedGoogle Scholar
  30. 30.
    Li Y, Finning K, Daniels G, Hahn S, Zhong X, Holzgreve W (2008) Noninvasive genotyping fetal Kell blood group (KEL1) using cell-free fetal DNA in maternal plasma by MALDI-TOF mass spectrometry. Prenatal Diagn 28:203–208CrossRefGoogle Scholar
  31. 31.
    Bombard AT, Akolekar R, Farkas DH, Van Agtmael AL, Aquino F, Oeth P et al (2011) Fetal RHD genotype detection from circulating cell-free fetal DNA in maternal plasma in non-sensitized RhD negative women. Prenatal Diagn 31:802–808CrossRefGoogle Scholar
  32. 32.
    Montpetit A, Phillips MS, Mongrain I, Lemieux R, St-Louis M (2006) High-throughput molecular profiling of blood donors for minor red blood cell and platelet antigens. Transfusion 46:841–848CrossRefPubMedGoogle Scholar
  33. 33.
    Garritsen HS, Fan AX, Bosse N, Hannig H, Kelsch R, Kroll H et al (2009) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for genotyping of human platelet-specific antigens. Transfusion 49:252–258CrossRefPubMedGoogle Scholar
  34. 34.
    Gassner C, Meyer S, Frey BM, Vollmert C (2013) Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry-based blood group genotyping–the alternative approach. Transfus Med Rev 27:2–9CrossRefPubMedGoogle Scholar
  35. 35.
    Lopez GH, McBean RS, Wilson B, Irwin DL, Liew YW, Hyland CA et al (2014) Molecular typing for the Indian blood group associated 252G>C single nucleotide polymorphism in a selected cohort of Australian blood donors. Blood Transfus 18:1–8Google Scholar
  36. 36.
    Meyer S, Vollmert C, Trost N, Bronnimann C, Gottschalk J, Buser A et al (2014) High-throughput Kell, Kidd, and Duffy matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry-based blood group genotyping of 4,000 donors shows close to full concordance with serotyping and detects new alleles. Transfusion 54(12):3198–3207CrossRefPubMedGoogle Scholar
  37. 37.
    Santos FR, Pandya A, Tyler-Smith C (1998) Reliability of DNA-based sex tests. Nat Genet 18:103CrossRefPubMedGoogle Scholar
  38. 38.
    Blood Donation Service Switzerland SRC. Guidelines of the Swiss Red Cross Blood Donation Service (2013) Chapter 11 B, immuno-haematological donor typing.
  39. 39.
    Crottet SL, Henny C, Meyer S, Still F, Stolz M, Gottschalk J et al (2014) Implementation of a mandatory donor RHD screening in Switzerland. Transfus Apher Sci 50:169–174CrossRefPubMedGoogle Scholar
  40. 40.
    Online Mendelian Inheritance of Men [database on the Internet] (2014)

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Molecular Diagnostics and Research (MOC)Swiss Red Cross Blood Transfusion Service ZurichSchlierenSwitzerland

Personalised recommendations