Molecular Typing of Blood Cell Antigens pp 247-258

Part of the Methods in Molecular Biology book series (MIMB, volume 1310) | Cite as

In Silico HLA Typing Using Standard RNA-Seq Sequence Reads

  • Sebastian Boegel
  • Jelle Scholtalbers
  • Martin Löwer
  • Ugur Sahin
  • John C. Castle

Abstract

Next-generation sequencing (NGS) enables high-throughput transcriptome profiling using the RNA-Seq assay, resulting in billions of short sequence reads. Worldwide adoption has been rapid: many laboratories worldwide generate transcriptome sequence reads daily. Here, we describe methods for obtaining a sample’s human leukocyte antigen (HLA) class I and II types and HLA expression using standard NGS RNA-Seq sequence reads. We demonstrate the application using our algorithm, seq2HLA, and a publicly available RNA-Seq dataset from the Burkitt lymphoma cell line Raji.

Key words

HLA type HLA expression NGS RNA-Seq Immunoinformatics In silico 

References

  1. 1.
    Gabriel C, Fürst D, Faé I, Wenda S, Zollikofer C, Mytilineos J, Fischer GF (2014) HLA typing by next-generation sequencing – getting closer to reality. Tissue Antigens 83:65–75CrossRefPubMedGoogle Scholar
  2. 2.
    de Santis D, Dinauer D, Duke J, Erlich HA, Holcomb CL, Lind C et al (2013) 16(th) IHIW. Review of HLA typing by NGS. Int J Immunogenet 40:72–76PubMedGoogle Scholar
  3. 3.
    Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR et al (2010) International network of cancer genome projects. Nature 464:993–998CrossRefPubMedGoogle Scholar
  4. 4.
    Chang K, Creighton CJ, Davis C, Donehower L, Drummond J, Wheeler D et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120Google Scholar
  5. 5.
    The Genotype-Tissue Expression (GTEx) Project (2013) Nat Genet 45:580–585Google Scholar
  6. 6.
    Boegel S, Löwer M, Schäfer M, Bukur T, de Graaf J, Boisguérin V et al (2012) HLA typing from RNA-Seq sequence reads. Genome Med 4:102PubMedCentralPubMedGoogle Scholar
  7. 7.
    Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, Moore R, Holt RA (2012) Derivation of HLA types from shotgun sequence datasets. Genome Med 4:95PubMedCentralPubMedGoogle Scholar
  8. 8.
    Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, Pfeifer JD (2013) ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res 41:e142PubMedCentralPubMedGoogle Scholar
  9. 9.
    Kim HJ, Pourmand N, Colombo G (2013) HLA haplotyping from RNA-seq data using hierarchical read weighting. PLoS One 8:e67885CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Bai Y, Ni M, Cooper B, Wei Y, Fury W (2014) Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads. BMC Genomics 15:325CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCentralPubMedGoogle Scholar
  12. 12.
    Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A et al (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771PubMedCentralPubMedGoogle Scholar
  14. 14.
    Helmberg W, Dunivin R, Feolo M (2004) The reagent database at dbMHC. Tissue Antigens 63:142–148CrossRefPubMedGoogle Scholar
  15. 15.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nat Methods 5:621–628PubMedGoogle Scholar
  16. 16.
    Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M et al (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28:1248–1250PubMedGoogle Scholar
  17. 17.
    Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–1455PubMedCentralPubMedGoogle Scholar
  18. 18.
    Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86PubMedCentralPubMedGoogle Scholar
  19. 19.
    Blankenberg D, von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M et al (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 19(10):1–21Google Scholar
  20. 20.
    Blankenberg D, von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N et al (2014) Dissemination of scientific software with Galaxy ToolShed. Genome Biol 15:403PubMedCentralPubMedGoogle Scholar
  21. 21.
    Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SGE (2012) The IMGT/HLA database. Nucleic Acids Res 41:D1222PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sebastian Boegel
    • 1
    • 2
  • Jelle Scholtalbers
    • 1
    • 4
  • Martin Löwer
    • 1
  • Ugur Sahin
    • 1
    • 2
    • 3
  • John C. Castle
    • 1
    • 5
  1. 1.TRON gGmbH – Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH MainzMainzGermany
  2. 2.University Medical Center of the Johannes Gutenberg-University MainzMainzGermany
  3. 3.BioNTech AGMainzGermany
  4. 4.European Molecular Biology LaboratoryHeidelbergGermany
  5. 5.4-Antibody AGBaselSwitzerland

Personalised recommendations