CRISPR pp 47-75 | Cite as

Annotation and Classification of CRISPR-Cas Systems

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1311)

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) is a prokaryotic adaptive immune system that is represented in most archaea and many bacteria. Among the currently known prokaryotic defense systems, the CRISPR-Cas genomic loci show unprecedented complexity and diversity. Classification of CRISPR-Cas variants that would capture their evolutionary relationships to the maximum possible extent is essential for comparative genomic and functional characterization of this theoretically and practically important system of adaptive immunity. To this end, a multipronged approach has been developed that combines phylogenetic analysis of the conserved Cas proteins with comparison of gene repertoires and arrangements in CRISPR-Cas loci. This approach led to the current classification of CRISPR-Cas systems into three distinct types and ten subtypes for each of which signature genes have been identified. Comparative genomic analysis of the CRISPR-Cas systems in new archaeal and bacterial genomes performed over the 3 years elapsed since the development of this classification makes it clear that new types and subtypes of CRISPR-Cas need to be introduced. Moreover, this classification system captures only part of the complexity of CRISPR-Cas organization and evolution, due to the intrinsic modularity and evolutionary mobility of these immunity systems, resulting in numerous recombinant variants. Moreover, most of the cas genes evolve rapidly, complicating the family assignment for many Cas proteins and the use of family profiles for the recognition of CRISPR-Cas subtype signatures. Further progress in the comparative analysis of CRISPR-Cas systems requires integration of the most sensitive sequence comparison tools, protein structure comparison, and refined approaches for comparison of gene neighborhoods.

Key words

CRISPR-Cas classification CRISPR-Cas annotation CRISPR-Cas evolution CRISPR Cas bioinformatics Cas1 RAMPs 

References

  1. 1.
    Makarova KS, Wolf YI, Koonin EV (2013) Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 41:4360–4377CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Barrangou R, Horvath P (2012) CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 3:143–162CrossRefPubMedGoogle Scholar
  3. 3.
    Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338CrossRefPubMedGoogle Scholar
  4. 4.
    van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407CrossRefPubMedGoogle Scholar
  5. 5.
    Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477CrossRefPubMedGoogle Scholar
  6. 6.
    Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Barrangou R (2013) CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev RNA 4:267–278CrossRefPubMedGoogle Scholar
  9. 9.
    Westra ER, Swarts DC, Staals RH, Jore MM, Brouns SJ, van der Oost J (2012) The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu Rev Genet 46:311–339CrossRefPubMedGoogle Scholar
  10. 10.
    Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40:5569–5576CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21:528–534CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Richter C, Gristwood T, Clulow JS, Fineran PC (2012) In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas System. PLoS One 7:e49549CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch AM, Glover CV III, Graveley BR, Terns RM, Terns MP (2012) Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45:292–302CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedGoogle Scholar
  16. 16.
    Sashital DG, Wiedenheft B, Doudna JA (2012) Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell 46:606–615CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    van Duijn E, Barbu IM, Barendregt A, Jore MM, Wiedenheft B, Lundgren M, Westra ER, Brouns SJ, Doudna JA, van der Oost J, Heck AJ (2012) Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from escherichia coli and pseudomonas aeruginosa. Mol Cell Proteomics 11:1430–1441CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers SV, Naismith JH, Spagnolo L, White MF (2012) Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 45:303–313CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, Barendregt A, Westphal W, Heck AJ, Boekema EJ, Dickman MJ, Doudna JA (2011) RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A 108:10092–10097CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50:488–503CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Staals RH, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW, van Duijn E, Barendregt A, Vlot M, Koehorst JJ, Sakamoto K, Masuda A, Dohmae N, Schaap PJ, Doudna JA, Heck AJ, Yonekura K, van der Oost J, Shinkai A (2013) Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell 52:135–145CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Spilman M, Cocozaki A, Hale C, Shao Y, Ramia N, Terns R, Terns M, Li H, Stagg S (2013) Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol Cell 52:146–152CrossRefPubMedGoogle Scholar
  24. 24.
    Makarova KS, Aravind L, Wolf YI, Koonin EV (2011) Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 6:38CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the conserved domain database. Nucleic Acids Res 37:D205–D210CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Wheeler D, Bhagwat M (2007) BLAST QuickStart: example-driven web-based BLAST tutorial. Methods Mol Biol 395:149–176CrossRefPubMedGoogle Scholar
  29. 29.
    Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:6091–6105CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Koonin EV, Makarova KS (2013) CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 10:679–686CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Makarova KS, Wolf YI, Koonin EV (2013) The basic building blocks and evolution of CRISPR-CAS systems. Biochem Soc Trans 41:1392–1400PubMedGoogle Scholar
  32. 32.
    Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L (2014) CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front Genet 5:102CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575CrossRefPubMedGoogle Scholar
  34. 34.
    Takeuchi N, Wolf YI, Makarova KS, Koonin EV (2012) Nature and intensity of selection pressure on CRISPR-associated genes. J Bacteriol 194:1216–1225CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Wiedenheft B, Zhou K, Jinek M, Coyle SM, Ma W, Doudna JA (2009) Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17:904–912CrossRefPubMedGoogle Scholar
  36. 36.
    Han D, Lehmann K, Krauss G (2009) SSO1450–a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA. FEBS Lett 583:1928–1932CrossRefPubMedGoogle Scholar
  37. 37.
    Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, Gagarinova A, Pogoutse O, Brown G, Binkowski A, Phanse S, Joachimiak A, Koonin EV, Savchenko A, Emili A, Greenblatt J, Edwards AM, Yakunin AF (2011) A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Beloglazova N, Brown G, Zimmerman MD, Proudfoot M, Makarova KS, Kudritska M, Kochinyan S, Wang S, Chruszcz M, Minor W, Koonin EV, Edwards AM, Savchenko A, Yakunin AF (2008) A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J Biol Chem 283:20361–20371CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Nam KH, Haitjema C, Liu X, Ding F, Wang H, DeLisa MP, Ke A (2012) Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20:1574–1584CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30:1335–1342CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Han D, Krauss G (2009) Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett 583:771–776CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang J, Kasciukovic T, White MF (2012) The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster. PLoS One 7:e47232CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJ, van der Oost J, Doudna JA, Nogales E (2011) Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–489CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18:529–536CrossRefPubMedGoogle Scholar
  45. 45.
    Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, Graham S, Robinson CV, Spagnolo L, White MF (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52:124–134CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Koo Y, Ka D, Kim EJ, Suh N, Bae E (2013) Conservation and variability in the structure and function of the Cas5d endoribonuclease in the CRISPR-mediated microbial immune system. J Mol Biol 425:3799–3810CrossRefPubMedGoogle Scholar
  47. 47.
    Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Niewoehner O, Jinek M, Doudna JA (2014) Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Res 42:1341–1353CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Reeks J, Sokolowski RD, Graham S, Liu H, Naismith JH, White MF (2013) Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochem J 452:223–230CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Richter H, Lange SJ, Backofen R, Randau L (2013) Comparative analysis of Cas6b processing and CRISPR RNA stability. RNA Biol 10:700–707CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22:3489–3496CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Cocozaki AI, Ramia NF, Shao Y, Hale CR, Terns RM, Terns MP, Li H (2012) Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex. Structure 20:545–553CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Reeks J, Naismith JH, White MF (2013) CRISPR interference: a structural perspective. Biochem J 453:155–166CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Reeks J, Graham S, Anderson L, Liu H, White MF, Naismith JH (2013) Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes. RNA Biol 10:762–769CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  57. 57.
    Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71CrossRefPubMedGoogle Scholar
  58. 58.
    Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–9282CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Mulepati S, Bailey S (2011) Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J Biol Chem 286:31896–31903CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Beloglazova N, Petit P, Flick R, Brown G, Savchenko A, Yakunin AF (2011) Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J 30:4616–4627CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Chakrabarti A, Desai P, Wickstrom E (2004) Transposon Tn7 protein TnsD binding to Escherichia coli attTn7 DNA and its eukaryotic orthologs. Biochemistry 43:2941–2946CrossRefPubMedGoogle Scholar
  64. 64.
    Kholodii GY, Mindlin SZ, Bass IA, Yurieva OV, Minakhina SV, Nikiforov VG (1995) Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol 17:1189–1200CrossRefPubMedGoogle Scholar
  65. 65.
    Jackson RN, Lavin M, Carter J, Wiedenheft B (2014) Fitting CRISPR-associated Cas3 into the helicase family tree. Curr Opin Struct Biol 24:106–114CrossRefPubMedGoogle Scholar
  66. 66.
    Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10:726–737CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, Bzdrenga J, Koonin EV, Charpentier E (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42:2577–2590CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Nam KH, Kurinov I, Ke A (2011) Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2 + -dependent double-stranded DNA binding activity. J Biol Chem 286:30759–30768CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Koo Y, Jung DK, Bae E (2012) Crystal structure of Streptococcus pyogenes Csn2 reveals calcium-dependent conformational changes in its tertiary and quaternary structure. PLoS One 7:e33401CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Arslan Z, Wurm R, Brener O, Ellinger P, Nagel-Steger L, Oesterhelt F, Schmitt L, Willbold D, Wagner R, Gohlke H, Smits SH, Pul U (2013) Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2. Nucleic Acids Res 41:6347–6359CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Lee KH, Lee SG, Eun Lee K, Jeon H, Robinson H, Oh BH (2012) Identification, structural, and biochemical characterization of a group of large Csn2 proteins involved in CRISPR-mediated bacterial immunity. Proteins 80:2573–2582CrossRefPubMedGoogle Scholar
  72. 72.
    Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R (2013) TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. J Genet Genomics 40:281–289CrossRefPubMedGoogle Scholar
  73. 73.
    Pennisi E (2013) The CRISPR craze. Science 341:833–836CrossRefPubMedGoogle Scholar
  74. 74.
    Anantharaman V, Iyer LM, Aravind L (2010) Presence of a classical RRM-fold palm domain in Thg1-type 3′-5′ nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains. Biol Direct 5:43CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Pei J, Grishin NV (2001) GGDEF domain is homologous to adenylyl cyclase. Proteins 42:210–216CrossRefPubMedGoogle Scholar
  76. 76.
    Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV (2002) A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Zhu X, Ye K (2012) Crystal structure of Cmr2 suggests a nucleotide cyclase-related enzyme in type III CRISPR-Cas systems. FEBS Lett 586:939–945CrossRefPubMedGoogle Scholar
  78. 78.
    Nickel L, Weidenbach K, Jager D, Backofen R, Lange SJ, Heidrich N, Schmitz RA (2013) Two CRISPR-Cas systems in Methanosarcina mazei strain Go1 display common processing features despite belonging to different types I and III. RNA Biol 10:779–791CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    White MF (2009) Structure, function and evolution of the XPD family of iron-sulfur-containing 5′ → 3′ DNA helicases. Biochem Soc Trans 37:547–551CrossRefPubMedGoogle Scholar
  81. 81.
    Makarova KS, Wolf YI, Forterre P, Prangishvili D, Krupovic M, Koonin EV (2014) Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles 18:877–893CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Makarova KS, Wolf YI, Snir S, Koonin EV (2011) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 193:6039–6056CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945CrossRefPubMedGoogle Scholar
  84. 84.
    Kim TY, Shin M, Huynh Thi Yen L, Kim JS (2013) Crystal structure of Cas1 from Archaeoglobus fulgidus and characterization of its nucleolytic activity. Biochem Biophys Res Commun 441:720–725CrossRefPubMedGoogle Scholar
  85. 85.
    Krupovic M, Makarova KS, Forterre P, Prangishvili D, Koonin EV (2014) Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol 12:36CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Makarova KS, Anantharaman V, Aravind L, Koonin EV (2012) Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol Direct 7:40CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Lintner NG, Kerou M, Brumfield SK, Graham S, Liu H, Naismith JH, Sdano M, Peng N, She Q, Copie V, Young MJ, White MF, Lawrence CM (2011) Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J Biol Chem 286:21643–21656CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Shao Y, Cocozaki AI, Ramia NF, Terns RM, Terns MP, Li H (2013) Structure of the Cmr2-Cmr3 subcomplex of the Cmr RNA silencing complex. Structure 21:376–384CrossRefPubMedCentralPubMedGoogle Scholar
  89. 89.
    Jore MM, Brouns SJ, van der Oost J (2012) RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. Cold Spring Harb Perspect Biol 4:pii: a003657CrossRefGoogle Scholar
  90. 90.
    Hrle A, Su AA, Ebert J, Benda C, Randau L, Conti E (2013) Structure and RNA-binding properties of the type III-A CRISPR-associated protein Csm3. RNA Biol 10:1670–1678CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Osawa T, Inanaga H, Numata T (2013) Crystal structure of the Cmr2-Cmr3 subcomplex in the CRISPR-Cas RNA silencing effector complex. J Mol Biol 425:3811–3823CrossRefPubMedGoogle Scholar
  92. 92.
    Quax TE, Wolf YI, Koehorst JJ, Wurtzel O, van der Oost R, Ran W, Blombach F, Makarova KS, Brouns SJ, Forster AC, Wagner EG, Sorek R, Koonin EV, van der Oost J (2013) Differential translation tunes uneven production of operon-encoded proteins. Cell Rep 4:938–944CrossRefPubMedGoogle Scholar
  93. 93.
    Steitz TA (2004) The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase. Curr Opin Struct Biol 14:4–9CrossRefPubMedGoogle Scholar
  94. 94.
    Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L (2013) Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol Direct 8:15CrossRefPubMedCentralPubMedGoogle Scholar
  95. 95.
    Penner M, Morad I, Snyder L, Kaufmann G (1995) Phage T4-coded Stp: double-edged effector of coupled DNA and tRNA-restriction systems. J Mol Biol 249:857–868CrossRefPubMedGoogle Scholar
  96. 96.
    Wang C, Villion M, Semper C, Coros C, Moineau S, Zimmerly S (2011) A reverse transcriptase-related protein mediates phage resistance and polymerizes untemplated DNA in vitro. Nucleic Acids Res 39:7620–7629CrossRefPubMedCentralPubMedGoogle Scholar
  97. 97.
    Kim YK, Kim YG, Oh BH (2013) Crystal structure and nucleic acid-binding activity of the CRISPR-associated protein Csx1 of Pyrococcus furiosus. Proteins 81:261–270CrossRefPubMedGoogle Scholar
  98. 98.
    Lintner NG, Frankel KA, Tsutakawa SE, Alsbury DL, Copie V, Young MJ, Tainer JA, Lawrence CM (2011) The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J Mol Biol 405:939–955CrossRefPubMedGoogle Scholar
  99. 99.
    Hein S, Scholz I, Voss B, Hess WR (2013) Adaptation and modification of three CRISPR loci in two closely related cyanobacteria. RNA Biol 10:852–864CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUSA

Personalised recommendations