Advertisement

Computational Phosphorylation Network Reconstruction: Methods and Resources

  • Guangyou Duan
  • Dirk Walther
Part of the Methods in Molecular Biology book series (MIMB, volume 1306)

Abstract

The succession of protein activation and deactivation mediated by phosphorylation and dephosphorylation events constitutes a key mechanism of molecular information transfer in cellular systems. To deduce the details of those molecular information cascades and networks has been a central goal pursued by both experimental and computational approaches. Many computational network reconstruction methods employing an array of different statistical learning methods have been developed to infer phosphorylation networks based on different types of molecular data sets such as protein sequence, protein structure, or phosphoproteomics data. In this chapter, different computational network inference methods and resources for biological network reconstruction with a particular focus on phosphorylation networks are surveyed.

Key words

Biological networks Phosphorylation networks Network inference Protein–protein interaction Reverse engineering 

References

  1. 1.
    Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113. doi: 10.1038/nrg1272 PubMedGoogle Scholar
  2. 2.
    Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68. doi: 10.1038/ng881 PubMedGoogle Scholar
  3. 3.
    Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7:391–403. doi: 10.1038/nrm1939 PubMedGoogle Scholar
  4. 4.
    The UniProt Consortium (2013) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42:D191–D198. doi: 10.1093/nar/gkt1140 PubMedCentralGoogle Scholar
  5. 5.
    Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, Diella F (2011) Phospho.ELM: a database of phosphorylation sites – update 2011. Nucleic Acids Res 39:D261–D267. doi: 10.1093/nar/gkq1104 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Zulawski M, Braginets R, Schulze WX (2013) PhosPhAt goes kinases – searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 41:D1176–D1184. doi: 10.1093/nar/gks1081 PubMedCentralPubMedGoogle Scholar
  7. 7.
    Hunter T, Plowman GD (1997) The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22:18–22PubMedGoogle Scholar
  8. 8.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934. doi: 10.1126/science.1075762 PubMedGoogle Scholar
  9. 9.
    McCubrey JA, May WS, Duronio V, Mufson A (2000) Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 14:9–21. doi: 10.1038/sj.leu.2401657 PubMedGoogle Scholar
  10. 10.
    Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. In: Letts LG, Morgan DW (eds) Inflammatory process and inflammatory research. Birkhäuser Basel, Basel, pp 13–21Google Scholar
  11. 11.
    Lee T-Y, Bo-Kai Hsu J, Chang W-C, Huang H-D (2010) RegPhos: a system to explore the protein kinase-substrate phosphorylation network in humans. Nucleic Acids Res 39:D777–D787. doi: 10.1093/nar/gkq970 PubMedCentralPubMedGoogle Scholar
  12. 12.
    Li X, Wilmanns M, Thornton J, Kohn M (2013) Elucidating human phosphatase-substrate networks. Sci Signal 6:rs10. doi: 10.1126/scisignal.2003203 PubMedGoogle Scholar
  13. 13.
    Ptacek J, Snyder M (2006) Charging it up: global analysis of protein phosphorylation. Trends Genet 22:545–554. doi: 10.1016/j.tig.2006.08.005 PubMedGoogle Scholar
  14. 14.
    Mok J, Zhu X, Snyder M (2011) Dissecting phosphorylation networks: lessons learned from yeast. Expert Rev Proteomics 8:775–786. doi: 10.1586/epr.11.64 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Xue Y, Gao X, Cao J, Liu Z, Jin C, Wen L, Yao X, Ren J (2010) A summary of computational resources for protein phosphorylation. Curr Protein Pept Sci 11:485–496PubMedGoogle Scholar
  16. 16.
    Trost B, Kusalik A (2011) Computational prediction of eukaryotic phosphorylation sites. Bioinformatics 27:2927–2935. doi: 10.1093/bioinformatics/btr525 PubMedGoogle Scholar
  17. 17.
    Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529. doi: 10.1126/science.1105809 PubMedGoogle Scholar
  18. 18.
    Imamura H, Yachie N, Saito R, Ishihama Y, Tomita M (2010) Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data. BMC Bioinformatics 11:232. doi: 10.1186/1471-2105-11-232 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Duan G, Walther D, Schulze W (2013) Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana. Front Plant Sci 4:540. doi: 10.3389/fpls.2013.00540 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470. doi: 10.1126/science.270.5235.467 PubMedGoogle Scholar
  21. 21.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi: 10.1038/nature03702 PubMedGoogle Scholar
  22. 22.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207. doi: 10.1038/nature01511 PubMedGoogle Scholar
  23. 23.
    Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedGoogle Scholar
  24. 24.
    Tudor CO, Arighi CN, Wang Q, Wu CH, Vijay-Shanker K (2012) The eFIP system for text mining of protein interaction networks of phosphorylated proteins. Database 2012:bas044. doi: 10.1093/database/bas044
  25. 25.
    Ferraro E, Via A, Ausiello G, Helmer-Citterich M (2005) A neural strategy for the inference of SH3 domain-peptide interaction specificity. BMC Bioinformatics 6:S13. doi: 10.1186/1471-2105-6-S4-S13 PubMedCentralPubMedGoogle Scholar
  26. 26.
    Finn RD, Miller BL, Clements J, Bateman A (2014) iPfam: a database of protein family and domain interactions found in the Protein Data Bank. Nucleic Acids Res 42:D364–D373. doi: 10.1093/nar/gkt1210 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Werhli AV, Grzegorczyk M, Husmeier D (2006) Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and Bayesian networks. Bioinformatics 22:2523–2531. doi: 10.1093/bioinformatics/btl391 PubMedGoogle Scholar
  28. 28.
    Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA (2014) Supervised, semi-supervised and unsupervised inference of gene regulatory networks. Brief Bioinform 15:195–211. doi: 10.1093/bib/bbt034 PubMedCentralPubMedGoogle Scholar
  29. 29.
    National Research Council (2007) Nutrigenomics and beyond: informing the future - workshop summary. Washington, DC: The National Academies PressGoogle Scholar
  30. 30.
    Hempel S, Koseska A, Nikoloski Z, Kurths J (2011) Unraveling gene regulatory networks from time-resolved gene expression data – a measures comparison study. BMC Bioinformatics 12:292. doi: 10.1186/1471-2105-12-292 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Walther D, Strassburg K, Durek P, Kopka J (2010) Metabolic pathway relationships revealed by an integrative analysis of the transcriptional and metabolic temperature stress-response dynamics in yeast. OMICS 14:261–274. doi: 10.1089/omi.2010.0010 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7:601–620. doi: 10.1089/106652700750050961 PubMedGoogle Scholar
  33. 33.
    Schäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol 4:32Google Scholar
  34. 34.
    Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21:754–764. doi: 10.1093/bioinformatics/bti062 PubMedGoogle Scholar
  35. 35.
    Michailidis G, D’Alché-Buc F (2013) Autoregressive models for gene regulatory network inference: sparsity, stability and causality issues. Math Biosci 246:326–334. doi: 10.1016/j.mbs.2013.10.003 PubMedGoogle Scholar
  36. 36.
    Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc B 58:267–288Google Scholar
  37. 37.
    Zhang Y, Pu Y, Zhang H, Su Y, Zhang L, Zhou J (2013) Using gene expression programming to infer gene regulatory networks from time-series data. Comput Biol Chem 47:198–206. doi: 10.1016/j.compbiolchem.2013.09.004 PubMedGoogle Scholar
  38. 38.
    Brouard C, Vrain C, Dubois J, Castel D, Debily M-A, d’Alché-Buc F (2013) Learning a Markov Logic network for supervised gene regulatory network inference. BMC Bioinformatics 14:273. doi: 10.1186/1471-2105-14-273 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Hase T, Ghosh S, Yamanaka R, Kitano H (2013) Harnessing diversity towards the reconstructing of large scale gene regulatory networks. PLoS Comput Biol 9:e1003361. doi: 10.1371/journal.pcbi.1003361 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Li Z, Li P, Krishnan A, Liu J (2011) Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis. Bioinformatics 27:2686–2691. doi: 10.1093/bioinformatics/btr454 PubMedGoogle Scholar
  41. 41.
    Meyer PE, Lafitte F, Bontempi G (2008) minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9:461. doi: 10.1186/1471-2105-9-461 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, Thorsson V (2006) The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7:R36. doi: 10.1186/gb-2006-7-5-r36 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Vallat L, Kemper CA, Jung N, Maumy-Bertrand M, Bertrand F, Meyer N, Pocheville A, Fisher JW, Gribben JG, Bahram S (2013) Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia. Proc Natl Acad Sci 110:459–464. doi: 10.1073/pnas.1211130110 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Lèbre S (2009) Inferring dynamic genetic networks with low order independencies. Stat Appl Genet Mol Biol 8:9. doi: 10.2202/1544-6115.1294 Google Scholar
  45. 45.
    Lèbre S, Becq J, Devaux F, Stumpf MPH, Lelandais G (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4:130. doi: 10.1186/1752-0509-4-130 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Abegaz F, Wit E (2013) Sparse time series chain graphical models for reconstructing genetic networks. Biostatistics 14:586–599. doi: 10.1093/biostatistics/kxt005 PubMedGoogle Scholar
  47. 47.
    Stolovitzky G, Monroe D, Califano A (2007) Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann N Y Acad Sci 1115:1–22. doi: 10.1196/annals.1407.021 PubMedGoogle Scholar
  48. 48.
    Schaffter T, Marbach D, Floreano D (2011) GeneNetWeaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27:2263–2270. doi: 10.1093/bioinformatics/btr373 PubMedGoogle Scholar
  49. 49.
    Mumby M, Brekken D (2005) Phosphoproteomics: new insights into cellular signaling. Genome Biol 6:230. doi: 10.1186/gb-2005-6-9-230 PubMedCentralPubMedGoogle Scholar
  50. 50.
    Collins MO, Yu L, Choudhary JS (2007) Analysis of protein phosphorylation on a proteome-scale. Proteomics 7:2751–2768. doi: 10.1002/pmic.200700145 PubMedGoogle Scholar
  51. 51.
    Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee S-J, Mah AS, Meng L, Stark MJR, Stern DF, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki PF, Snyder M (2005) Global analysis of protein phosphorylation in yeast. Nature 438:679–684. doi: 10.1038/nature04187 PubMedGoogle Scholar
  52. 52.
    The UniProt Consortium (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42:7486. doi: 10.1093/nar/gku469 PubMedCentralGoogle Scholar
  53. 53.
    Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270. doi: 10.1093/nar/gkr1122 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Zanzoni A, Carbajo D, Diella F, Gherardini PF, Tramontano A, Helmer-Citterich M, Via A (2011) Phospho3D 2.0: an enhanced database of three-dimensional structures of phosphorylation sites. Nucleic Acids Res 39:D268–D271. doi: 10.1093/nar/gkq936 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Sadowski I, Breitkreutz B-J, Stark C, Su T-C, Dahabieh M, Raithatha S, Bernhard W, Oughtred R, Dolinski K, Barreto K, Tyers M (2013) The phosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update. Database 2013:bat026. doi: 10.1093/database/bat026
  56. 56.
    Tchieu JH (2003) The PlantsP and PlantsT functional genomics databases. Nucleic Acids Res 31:342–344. doi: 10.1093/nar/gkg025 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Terfve C, Saez-Rodriguez J (2012) Modeling signaling networks using high-throughput phospho-proteomics. Adv Exp Med Biol 736:19–57. doi: 10.1007/978-1-4419-7210-1_2 PubMedGoogle Scholar
  58. 58.
    Chen W-M, Danziger SA, Chiang J-H, Aitchison JD (2013) PhosphoChain: a novel algorithm to predict kinase and phosphatase networks from high-throughput expression data. Bioinformatics 29:2435–2444. doi: 10.1093/bioinformatics/btt387 PubMedCentralPubMedGoogle Scholar
  59. 59.
    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648. doi: 10.1016/j.cell.2006.09.026 PubMedGoogle Scholar
  60. 60.
    Nilsson CL (2012) Advances in quantitative phosphoproteomics. Anal Chem 84:735–746. doi: 10.1021/ac202877y PubMedGoogle Scholar
  61. 61.
    Maathuis FJ (2008) Conservation of protein phosphorylation sites within gene families and across species. Plant Signal Behav 3:1011–1013PubMedCentralPubMedGoogle Scholar
  62. 62.
    Peters EC, Brock A, Ficarro SB (2004) Exploring the phosphoproteome with mass spectrometry. Mini Rev Med Chem 4:313–324PubMedGoogle Scholar
  63. 63.
    Puente LG, Lee REC, Megeney LA (2009) Reconstructing regulatory kinase pathways from phosphopeptide data: a bioinformatics approach. Methods Mol Biol 527:311–319. doi: 10.1007/978-1-60327-834-8_23 PubMedGoogle Scholar
  64. 64.
    Tan CSH, Linding R (2009) Experimental and computational tools useful for (re)construction of dynamic kinase-substrate networks. Proteomics 9:5233–5242. doi: 10.1002/pmic.200900266 PubMedGoogle Scholar
  65. 65.
    Ren J, Gao X, Liu Z, Cao J, Ma Q, Xue Y (2011) Computational analysis of phosphoproteomics: progresses and perspectives. Curr Protein Pept Sci 12:591–601PubMedGoogle Scholar
  66. 66.
    Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362. doi: 10.1006/jmbi.1999.3310 PubMedGoogle Scholar
  67. 67.
    Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049. doi: 10.1093/nar/gkh253 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Berry EA, Dalby AR, Yang ZR (2004) Reduced bio basis function neural network for identification of protein phosphorylation sites: comparison with pattern recognition algorithms. Comput Biol Chem 28:75–85PubMedGoogle Scholar
  69. 69.
    Plewczyński D, Tkacz A, Godzik A, Rychlewski L (2005) A support vector machine approach to the identification of phosphorylation sites. Cell Mol Biol Lett 10:73–89PubMedGoogle Scholar
  70. 70.
    Swaminathan K, Adamczak R, Porollo A, Meller J (2010) Enhanced prediction of conformational flexibility and phosphorylation in proteins. Adv Exp Med Biol 680:307–319. doi: 10.1007/978-1-4419-5913-3_35 PubMedGoogle Scholar
  71. 71.
    Yaffe MB, Leparc GG, Lai J, Obata T, Volinia S, Cantley LC (2001) A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol 19:348–353. doi: 10.1038/86737 PubMedGoogle Scholar
  72. 72.
    Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641. doi: 10.1093/nar/gkg584 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Brinkworth RI, Breinl RA, Kobe B (2003) Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc Natl Acad Sci U S A 100:74–79. doi: 10.1073/pnas.0134224100 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Koenig M, Grabe N (2004) Highly specific prediction of phosphorylation sites in proteins. Bioinformatics 20:3620–3627. doi: 10.1093/bioinformatics/bth455 PubMedGoogle Scholar
  75. 75.
    Kim JH, Lee J, Oh B, Kimm K, Koh I (2004) Prediction of phosphorylation sites using SVMs. Bioinformatics 20:3179–3184. doi: 10.1093/bioinformatics/bth382 PubMedGoogle Scholar
  76. 76.
    Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649. doi: 10.1002/pmic.200300771 PubMedGoogle Scholar
  77. 77.
    Hjerrild M, Stensballe A, Rasmussen TE, Kofoed CB, Blom N, Sicheritz-Ponten T, Larsen MR, Brunak S, Jensen ON, Gammeltoft S (2004) Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry. J Proteome Res 3:426–433PubMedGoogle Scholar
  78. 78.
    Zhou F-F, Xue Y, Chen G-L, Yao X (2004) GPS: a novel group-based phosphorylation predicting and scoring method. Biochem Biophys Res Commun 325:1443–1448. doi: 10.1016/j.bbrc.2004.11.001 PubMedGoogle Scholar
  79. 79.
    Xue Y, Zhou F, Zhu M, Ahmed K, Chen G, Yao X (2005) GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic Acids Res 33:W184–W187. doi: 10.1093/nar/gki393 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7:1598–1608. doi:10.1074/mcp. M700574-MCP200PubMedCentralPubMedGoogle Scholar
  81. 81.
    Huang H-D, Lee T-Y, Tzeng S-W, Horng J-T (2005) KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res 33:W226–W229. doi: 10.1093/nar/gki471 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Wong Y-H, Lee T-Y, Liang H-K, Huang C-M, Wang T-Y, Yang Y-H, Chu C-H, Huang H-D, Ko M-T, Hwang J-K (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 35:W588–W594. doi: 10.1093/nar/gkm322 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Plewczynski D, Tkacz A, Wyrwicz LS, Rychlewski L (2005) AutoMotif server: prediction of single residue post-translational modifications in proteins. Bioinformatics 21:2525–2527. doi: 10.1093/bioinformatics/bti333 PubMedGoogle Scholar
  84. 84.
    Tang Y-R, Chen Y-Z, Canchaya CA, Zhang Z (2007) GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network. Protein Eng Des Sel 20:405–412. doi: 10.1093/protein/gzm035 PubMedGoogle Scholar
  85. 85.
    Wang M, Li C, Chen W, Wang C (2008) Prediction of PK-specific phosphorylation site based on information entropy. Sci China C Life Sci 51:12–20. doi: 10.1007/s11427-008-0012-1 PubMedGoogle Scholar
  86. 86.
    Li L, Wu C, Huang H, Zhang K, Gan J, Li SS-C (2008) Prediction of phosphotyrosine signaling networks using a scoring matrix-assisted ligand identification approach. Nucleic Acids Res 36:3263–3273. doi: 10.1093/nar/gkn161 PubMedCentralPubMedGoogle Scholar
  87. 87.
    Yoo PD, Ho YS, Zhou BB, Zomaya AY (2008) SiteSeek: post-translational modification analysis using adaptive locality-effective kernel methods and new profiles. BMC Bioinformatics 9:272. doi: 10.1186/1471-2105-9-272 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Gao J, Thelen JJ, Dunker AK, Xu D (2010) Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 9:2586–2600. doi: 10.1074/mcp.M110.001388 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Sobolev B, Filimonov D, Lagunin A, Zakharov A, Koborova O, Kel A, Poroikov V (2010) Functional classification of proteins based on projection of amino acid sequences: application for prediction of protein kinase substrates. BMC Bioinformatics 11:313. doi: 10.1186/1471-2105-11-313 PubMedCentralPubMedGoogle Scholar
  90. 90.
    Yu Z, Deng Z, Wong H-S, Tan L (2010) Identifying protein-kinase-specific phosphorylation sites based on the Bagging-AdaBoost ensemble approach. IEEE Trans Nanobioscience 9:132–143. doi: 10.1109/TNB.2010.2043682 PubMedGoogle Scholar
  91. 91.
    Jung I, Matsuyama A, Yoshida M, Kim D (2010) PostMod: sequence based prediction of kinase-specific phosphorylation sites with indirect relationship. BMC Bioinformatics 11:S10. doi: 10.1186/1471-2105-11-S1-S10 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Zou L, Wang M, Shen Y, Liao J, Li A, Wang M (2013) PKIS: computational identification of protein Kinases for experimentally discovered protein Phosphorylation sites. BMC Bioinformatics 14:247. doi: 10.1186/1471-2105-14-247 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Neuberger G, Schneider G, Eisenhaber F (2007) pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model. Biol Direct 2:1. doi: 10.1186/1745-6150-2-1 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Dang TH, Van Leemput K, Verschoren A, Laukens K (2008) Prediction of kinase-specific phosphorylation sites using conditional random fields. Bioinformatics 24:2857–2864. doi: 10.1093/bioinformatics/btn546 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Saunders NFW, Kobe B (2008) The Predikin webserver: improved prediction of protein kinase peptide specificity using structural information. Nucleic Acids Res 36:W286–W290. doi: 10.1093/nar/gkn279 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Saunders NFW, Brinkworth RI, Huber T, Kemp BE, Kobe B (2008) Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites. BMC Bioinformatics 9:245. doi: 10.1186/1471-2105-9-245 PubMedCentralPubMedGoogle Scholar
  97. 97.
    Durek P, Schudoma C, Weckwerth W, Selbig J, Walther D (2009) Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins. BMC Bioinformatics 10:117. doi: 10.1186/1471-2105-10-117 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129:1415–1426. doi: 10.1016/j.cell.2007.05.052 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Linding R, Jensen LJ, Pasculescu A, Olhovsky M, Colwill K, Bork P, Yaffe MB, Pawson T (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36:D695–D699. doi: 10.1093/nar/gkm902 PubMedCentralPubMedGoogle Scholar
  100. 100.
    Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, Xue Y, Zou H (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics 11:1070–1083. doi: 10.1074/mcp.M111.012625 PubMedCentralPubMedGoogle Scholar
  101. 101.
    Liu Z, Ren J, Cao J, He J, Yao X, Jin C, Xue Y (2013) Systematic analysis of the Plk-mediated phosphoregulation in eukaryotes. Brief Bioinform 14:344–360PubMedGoogle Scholar
  102. 102.
    Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang S-Y, Chen DJ, Aebersold R, Shiloh Y (2010) ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal 3:3. doi: 10.1126/scisignal.2001034 Google Scholar
  103. 103.
    Bakal C, Linding R, Llense F, Heffern E, Martin-Blanco E, Pawson T, Perrimon N (2008) Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. Science 322:453–456. doi: 10.1126/science.1158739 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Van Hoof D, Muñoz J, Braam SR, Pinkse MWH, Linding R, Heck AJR, Mummery CL, Krijgsveld J (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5:214–226. doi: 10.1016/j.stem.2009.05.021 PubMedGoogle Scholar
  105. 105.
    Bennetzen MV, Mariño G, Pultz D, Morselli E, Færgeman NJ, Kroemer G, Andersen JS (2012) Phosphoproteomic analysis of cells treated with longevity-related autophagy inducers. Cell Cycle 11:1827–1840PubMedGoogle Scholar
  106. 106.
    Zanivan S, Meves A, Behrendt K, Schoof EM, Neilson LJ, Cox J, Tang HR, Kalna G, van Ree JH, van Deursen JM, Trempus CS, Machesky LM, Linding R, Wickström SA, Fässler R, Mann M (2013) In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis. Cell Rep 3:552–566. doi: 10.1016/j.celrep.2013.01.003 PubMedGoogle Scholar
  107. 107.
    Damle NP, Mohanty D (2014) Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network. Bioinformatics 30:1730–1738. doi: 10.1093/bioinformatics/btu112 PubMedGoogle Scholar
  108. 108.
    Kobe B, Kampmann T, Forwood JK, Listwan P, Brinkworth RI (2005) Substrate specificity of protein kinases and computational prediction of substrates. Biochim Biophys Acta 1754:200–209. doi: 10.1016/j.bbapap.2005.07.036 PubMedGoogle Scholar
  109. 109.
    Hjerrild M, Gammeltoft S (2006) Phosphoproteomics toolbox: computational biology, protein chemistry and mass spectrometry. FEBS Lett 580:4764–4770. doi: 10.1016/j.febslet.2006.07.068 PubMedGoogle Scholar
  110. 110.
    Miller ML, Blom N (2009) Kinase-specific prediction of protein phosphorylation sites. Methods Mol Biol 527:299–310. doi: 10.1007/978-1-60327-834-8_22 PubMedGoogle Scholar
  111. 111.
    Wan J, Kang S, Tang C, Yan J, Ren Y, Liu J, Gao X, Banerjee A, Ellis LBM, Li T (2008) Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection. Nucleic Acids Res 36:e22. doi: 10.1093/nar/gkm848 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Santra T, Kholodenko B, Kolch W (2012) An integrated Bayesian framework for identifying phosphorylation networks in stimulated cells. Adv Exp Med Biol 736:59–80. doi: 10.1007/978-1-4419-7210-1_3 PubMedGoogle Scholar
  113. 113.
    Seet BT, Dikic I, Zhou M-M, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7:473–483. doi: 10.1038/nrm1960 PubMedGoogle Scholar
  114. 114.
    Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815. doi: 10.1093/nar/gks1094 PubMedCentralPubMedGoogle Scholar
  115. 115.
    Chatr-Aryamontri A, Breitkreutz B-J, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823. doi: 10.1093/nar/gks1158 PubMedCentralPubMedGoogle Scholar
  116. 116.
    Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451. doi: 10.1093/nar/gkh086 PubMedCentralPubMedGoogle Scholar
  117. 117.
    Patil A, Nakai K, Nakamura H (2011) HitPredict: a database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res 39:D744–D749PubMedCentralPubMedGoogle Scholar
  118. 118.
    Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–D861. doi: 10.1093/nar/gkr930 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846. doi: 10.1093/nar/gkr1088 PubMedCentralPubMedGoogle Scholar
  120. 120.
    Prieto C, De Las Rivas J (2006) APID: agile protein interaction data analyzer. Nucleic Acids Res 34:W298–W302. doi: 10.1093/nar/gkl128 PubMedCentralPubMedGoogle Scholar
  121. 121.
    Mewes HW, Ruepp A, Theis F, Rattei T, Walter M, Frishman D, Suhre K, Spannagl M, Mayer KFX, Stümpflen V, Antonov A (2010) MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic Acids Res 1–5. doi:10.1093/nar/gkq1157Google Scholar
  122. 122.
    Prasad TSK, Kandasamy K, Pandey A (2009) Human protein reference database and human proteinpedia as discovery tools for systems biology. Methods Mol Biol 577:67–79. doi: 10.1007/978-1-60761-232-2 PubMedGoogle Scholar
  123. 123.
    Del-Toro N, Dumousseau M, Orchard S, Jimenez RC, Galeota E, Launay G, Goll J, Breuer K, Ono K, Salwinski L, Hermjakob H (2013) A new reference implementation of the PSICQUIC web service. Nucleic Acids Res 41:W601–W606. doi: 10.1093/nar/gkt392 PubMedCentralPubMedGoogle Scholar
  124. 124.
    Yachie N, Saito R, Sugiyama N, Tomita M, Ishihama Y (2011) Integrative features of the yeast phosphoproteome and protein–protein interaction map. PLoS Comput Biol 7:e1001064. doi: 10.1371/journal.pcbi.1001064 PubMedCentralPubMedGoogle Scholar
  125. 125.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166. doi: 10.1126/science.1140321 PubMedGoogle Scholar
  126. 126.
    Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, Furnari FB, White FM (2007) Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A 104:12867–12872. doi: 10.1073/pnas.0705158104 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Krüger M, Kratchmarova I, Blagoev B, Tseng Y-H, Kahn CR, Mann M (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci U S A 105:2451–2456. doi: 10.1073/pnas.0711713105 PubMedCentralPubMedGoogle Scholar
  128. 128.
    Jørgensen C, Sherman A, Chen GI, Pasculescu A, Poliakov A, Hsiung M, Larsen B, Wilkinson DG, Linding R, Pawson T (2009) Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326:1502–1509. doi: 10.1126/science.1176615 PubMedGoogle Scholar
  129. 129.
    Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villén J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189. doi: 10.1016/j.cell.2010.12.001 PubMedCentralPubMedGoogle Scholar
  130. 130.
    Weigand S, Herting F, Maisel D, Nopora A, Voss E, Schaab C, Klammer M, Tebbe A (2012) Global quantitative phosphoproteome analysis of human tumor xenografts treated with a CD44 antagonist. Cancer Res 72:4329–4339. doi: 10.1158/0008-5472.CAN-12-0136 PubMedGoogle Scholar
  131. 131.
    Imami K, Sugiyama N, Imamura H, Wakabayashi M, Tomita M, Taniguchi M, Ueno T, Toi M, Ishihama Y (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways. Mol Cell Proteomics 11:1741–1757. doi: 10.1074/mcp.M112.019919 PubMedCentralPubMedGoogle Scholar
  132. 132.
    White FM (2008) Quantitative phosphoproteomic analysis of signaling network dynamics. Curr Opin Biotechnol 19:404–409. doi: 10.1016/j.copbio.2008.06.006 PubMedCentralPubMedGoogle Scholar
  133. 133.
    Morandell S, Grosstessner-Hain K, Roitinger E, Hudecz O, Lindhorst T, Teis D, Wrulich OA, Mazanek M, Taus T, Ueberall F, Mechtler K, Huber LA (2010) QIKS – Quantitative identification of kinase substrates. Proteomics 10:2015–2025. doi: 10.1002/pmic.200900749 PubMedGoogle Scholar
  134. 134.
    Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6:1711–1726. doi:10.1074/mcp. M700164-MCP200PubMedGoogle Scholar
  135. 135.
    Engelsberger WR, Schulze WX (2012) Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen starved Arabidopsis seedlings. Plant J 69:978–995. doi: 10.1111/j.1365-313X.2011.04848.x PubMedCentralPubMedGoogle Scholar
  136. 136.
    Nita-Lazar A, Saito-Benz H, White FM (2008) Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 8:4433–4443. doi: 10.1002/pmic.200800231 PubMedCentralPubMedGoogle Scholar
  137. 137.
    Ekins S, Xu JJ, Alexopoulos LG, Saez-Rodriguez J, Espelin CW (2008) High-throughput protein-based technologies and computational models for drug development, efficacy, and toxicity. In: Ekins S, Xu JJ (eds) Drug efficacy, safety, and biologics discovery: emerging technologies and tools. Wiley, Hoboken, NJ, pp 29–52Google Scholar
  138. 138.
    Gaudet S, Janes KA, Albeck JG, Pace EA, Lauffenburger DA, Sorger PK (2005) A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol Cell Proteomics 4:1569–1590. doi:10.1074/mcp. M500158-MCP200PubMedGoogle Scholar
  139. 139.
    Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653. doi: 10.1126/science.1116598 PubMedGoogle Scholar
  140. 140.
    Ciaccio MF, Wagner JP, Chuu C-P, Lauffenburger DA, Jones RB (2010) Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods 7:148–155. doi: 10.1038/nmeth.1418 PubMedCentralPubMedGoogle Scholar
  141. 141.
    Wagner JP, Lauffenburger DA (2009) Bayesian network inference of phosphoproteomic signaling networks. In: Seventh Annual Workshop on Bayes Applications, Montreal, CanadaGoogle Scholar
  142. 142.
    Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK (2009) Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5:239. doi: 10.1038/msb.2008.74 PubMedCentralPubMedGoogle Scholar
  143. 143.
    Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5:331. doi: 10.1038/msb.2009.87 PubMedCentralPubMedGoogle Scholar
  144. 144.
    Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49:3216–3224. doi: 10.1021/bi902202q PubMedCentralPubMedGoogle Scholar
  145. 145.
    Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W (2006) Rules for modeling signal-transduction systems. Sci STKE 2006:re6. doi: 10.1126/stke.3442006re6 PubMedGoogle Scholar
  146. 146.
    Danos V, Feret J, Fontana W, Harmer R, Krivine J, Biosystems P, Supérieure ÉN, Polytechnique É (2007) Rule-based modelling of cellular signalling. Lect Notes Comput Sci 4703:17–41Google Scholar
  147. 147.
    Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324–330. doi: 10.1038/ncb1543 PubMedGoogle Scholar
  148. 148.
    Nelander S, Wang W, Nilsson B, She Q-B, Pratilas C, Rosen N, Gennemark P, Sander C (2008) Models from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol 4:216. doi: 10.1038/msb.2008.53 PubMedCentralPubMedGoogle Scholar
  149. 149.
    Locasale JW, Wolf-Yadlin A (2009) Maximum entropy reconstructions of dynamic signaling networks from quantitative proteomics data. PLoS One 4:e6522. doi: 10.1371/journal.pone.0006522 PubMedCentralPubMedGoogle Scholar
  150. 150.
    Wu XN, Sanchez-Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX (2013) Sucrose-induced receptor kinase SIRK1 regulates plasma membrane aquaporins in Arabidopsis. Mol Cell Proteomics 12:2856–2873. doi: 10.1074/mcp.M113.029579 PubMedCentralPubMedGoogle Scholar
  151. 151.
    Chen X, Shi S-P, Suo S-B, Xu H-D, Qiu J-D (2014) Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveals subcellular specificity. Bioinformatics. doi: 10.1093/bioinformatics/btu598 Google Scholar
  152. 152.
    Van Wijk KJ, Friso G, Walther D, Schulze WX (2014) Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26:2367–2389. doi: 10.1105/tpc.114.125815 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Max Planck Institute for Molecular Plant PhysiologyPotsdam-GolmGermany
  2. 2.EMBLHeidelbergGermany

Personalised recommendations