Identification of Lysine-Acetylated Mitochondrial Proteins and Their Acetylation Sites

  • Markus Hartl
  • Ann-Christine König
  • Iris Finkemeier
Part of the Methods in Molecular Biology book series (MIMB, volume 1305)


The εN-acetylation of lysine side chains is a highly conserved posttranslational modification of both prokaryotic and eukaryotic proteins. Lysine acetylation not only occurs on histones in the nucleus but also on many mitochondrial proteins in plants and animals. As the transfer of the acetyl group to lysine eliminates its positive charge, lysine acetylation can affect the biological function of proteins. This chapter describes two methods for the identification of lysine-acetylated proteins in plant mitochondria using an anti-acetyllysine antibody. We describe the Western blot analysis of a two-dimensional blue native-polyacrylamide gel electrophoresis with an anti-acetyllysine antibody as well as the immuno-enrichment of lysine-acetylated peptides followed by liquid chromatography-tandem mass spectrometry data acquisition and analysis.

Key words

Lysine acetylation Mitochondria Arabidopsis Protein complexes Blue native-polyacrylamide gel electrophoresis (BN-PAGE) 


  1. 1.
    Deribe YL, Pawson T, Dikic I (2010) Post-translational modifications in signal integration. Nat Struct Mol Biol 17:666–672CrossRefPubMedGoogle Scholar
  2. 2.
    Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840CrossRefPubMedGoogle Scholar
  3. 3.
    Close P, Creppe C, Gillard M et al (2010) The emerging role of lysine acetylation of non-nuclear proteins. Cell Mol Life Sci 67:1255–1264CrossRefPubMedGoogle Scholar
  4. 4.
    Norvell A, Mcmahon SB (2010) Rise of the rival. Science 327:964–965CrossRefPubMedGoogle Scholar
  5. 5.
    Weinert BT, Wagner SA, Horn H et al (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4:ra48PubMedGoogle Scholar
  6. 6.
    Xing S, Poirier Y (2012) The protein acetylome and the regulation of metabolism. Trends Plant Sci 17:423–430CrossRefPubMedGoogle Scholar
  7. 7.
    Gershey EL, Vidali G, Allfrey VG (1968) Chemical studies of histone acetylation. The occurrence of epsilon-N-acetyllysine in the f2a1 histone. J Biol Chem 243:5018–5022PubMedGoogle Scholar
  8. 8.
    Hartl M, Finkemeier I (2012) Plant mitochondrial retrograde signaling: post-translational modifications enter the stage. Front Plant Sci 3:253CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Finkemeier I, Laxa M, Miguet L et al (2011) Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. Plant Physiol 155:1779–1790CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Koenig AC, Hartl M, Pham PA et al (2014) The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism. Plant Physiol 164:1401CrossRefGoogle Scholar
  11. 11.
    Wu X, Oh MH, Schwarz EM et al (2011) Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis. Plant Physiol 155:1769–1778CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    König AC, Hartl M, Boersema P et al (2014) The mitochondrial lysine acetylome of Arabidopsis. Mitochondrion 19:252CrossRefPubMedGoogle Scholar
  13. 13.
    Heinemeyer J, Lewejohann D, Braun HP (2007) Blue-native gel electrophoresis for the characterization of protein complexes in plants. Methods Mol Biol 355:343–352PubMedGoogle Scholar
  14. 14.
    Klodmann J, Senkler M, Rode C et al (2011) Defining the protein complex proteome of plant mitochondria. Plant Physiol 157:587–598CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Mertins P, Qiao JW, Patel J et al (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10:634–637CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Dormeyer W, Ott M, Schnolzer M (2005) Probing lysine acetylation in proteins: strategies, limitations, and pitfalls of in vitro acetyltransferase assays. Mol Cell Prot 4:1226–1239CrossRefGoogle Scholar
  17. 17.
    Kim JY, Kim KW, Kwon HJ et al (2002) Probing lysine acetylation with a modification-specific marker ion using high-performance liquid chromatography/electrospray-mass spectrometry with collision-induced dissociation. Anal Chem 74:5443–5449CrossRefPubMedGoogle Scholar
  18. 18.
    Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362CrossRefPubMedGoogle Scholar
  19. 19.
    Guan KL, Yu W, Lin Y et al (2010) Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides. Nat Protoc 5:1583–1595CrossRefPubMedGoogle Scholar
  20. 20.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906CrossRefPubMedGoogle Scholar
  21. 21.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Markus Hartl
    • 1
  • Ann-Christine König
    • 1
  • Iris Finkemeier
    • 1
  1. 1.Plant Proteomics and Mass, Spectrometry GroupMax-Planck-Institute for Plant Breeding ResearchCologneGermany

Personalised recommendations