Analysis of Plant Mitochondrial Function Using Fluorescent Protein Sensors

  • Stephan Wagner
  • Thomas Nietzel
  • Isabel Aller
  • Alex Costa
  • Mark D. Fricker
  • Andreas J. Meyer
  • Markus SchwarzländerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1305)


Mitochondrial physiology sets the basis for function of the organelle and vice versa. While a limited range of in vivo parameters, such as oxygen consumption, has been classically accessible for measurement, a growing collection of fluorescent protein sensors can now give insights into the physiology of plant mitochondria. Nevertheless, the meaningful application of these sensors in mitochondria is technically challenging and requires rigorous experimental standards. Here we exemplify the application of three genetically encoded sensors to monitor glutathione redox potential, pH, and calcium in the matrix of mitochondria in intact plants. We describe current methods for quantitative imaging and analysis in living root tips by confocal microscopy and discuss methodological limitations.

Key words

Plant mitochondria Fluorescent protein sensors In vivo imaging Confocal microscopy Respiratory physiology roGFP Cameleon cpYFP 



M.S. was supported by the Deutsche Forschungsgemeinschaft through the Emmy Noether Programme (SCHW1719/1-1).


  1. 1.
    Baradaran R, Berrisford JM, Minhas GS et al (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Schwarzländer M, Finkemeier I (2013) Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal 18:2122–2144CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Schwarzländer M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta 1787:468–475CrossRefPubMedGoogle Scholar
  4. 4.
    Poburko D, Santo-Domingo J, Demaurex N (2011) Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem 286:11672–11684CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Loro G, Drago I, Pozzan T et al (2012) Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells. Plant J 71:1–13CrossRefPubMedGoogle Scholar
  6. 6.
    Imamura H, Nhat KP, Togawa H et al (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106:15651–15656CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Albrecht SC, Sobotta MC, Bausewein D et al (2014) Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. J Biomol Screen 19:379–386CrossRefPubMedGoogle Scholar
  8. 8.
    Schwarzländer M, Logan DC, Fricker MD et al (2011) The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria: implications for the existence of superoxide ‘flashes’. Biochem J 437:381–387CrossRefPubMedGoogle Scholar
  9. 9.
    Behera S, Krebs M, Loro G et al (2013) Ca2+ imaging in plants using genetically encoded Yellow Cameleon Ca2+ indicators. Cold Spring Harb Protoc 2013:700–703PubMedGoogle Scholar
  10. 10.
    Schwarzländer M, Logan DC, Johnston IG et al (2012) Pulsing of membrane potential in individual mitochondria: a stress-induced mechanism to regulate respiratory bioenergetics in Arabidopsis. Plant Cell 24:1188–1201CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Loro G, Costa A (2013) Imaging of mitochondrial and nuclear Ca2+ dynamics in Arabidopsis roots. Cold Spring Harb Protoc 2013:781–785CrossRefPubMedGoogle Scholar
  12. 12.
    Costa A, Candeo A, Fieramonti L et al (2013) Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy. PLoS One 8:e75646CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Schwarzländer M, Fricker MD, Müller C et al (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231:299–316CrossRefPubMedGoogle Scholar
  14. 14.
    Logan DC, Knight MR (2003) Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants. Plant Physiol 133:21–24CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Gutscher M, Pauleau AL, Marty L et al (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5:553–559CrossRefPubMedGoogle Scholar
  16. 16.
    Logan DC, Leaver CJ (2000) Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J Exp Bot 51:865–871CrossRefPubMedGoogle Scholar
  17. 17.
    Fricker MD, May M, Meyer AJ et al (2000) Measurement of glutathione levels in intact roots of Arabidopsis. J Microsc 198:162–173CrossRefPubMedGoogle Scholar
  18. 18.
    Zechmann B, Mauch F, Sticher L et al (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59:4017–4027CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Marty L, Siala W, Schwarzländer M et al (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 106:9109–9114CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Dooley CT, Dore TM, Hanson GT et al (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279:22284–22293CrossRefPubMedGoogle Scholar
  21. 21.
    Ostergaard H, Tachibana C, Winther JR (2004) Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166:337–345CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Meyer AJ, Brach T, Marty L et al (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986CrossRefPubMedGoogle Scholar
  23. 23.
    Nagai T, Sawano A, Park ES et al (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Wang W, Fang H, Groom L et al (2008) Superoxide flashes in single mitochondria. Cell 134:279–290CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Nagai T, Yamada S, Tominaga T et al (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Filippin L, Abad MC, Gastaldello S et al (2005) Improved strategies for the delivery of GFP-based Ca2+ sensors into the mitochondrial matrix. Cell Calcium 37:129–136CrossRefPubMedGoogle Scholar
  27. 27.
    Schwarzländer M, Wagner S, Ermakova YG et al (2014) The ‘mitoflash’ probe cpYFP does not respond to superoxide. Nature 514(7523):E12–E14. doi: 10.1038/nature13858

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Stephan Wagner
    • 1
  • Thomas Nietzel
    • 1
  • Isabel Aller
    • 2
  • Alex Costa
    • 3
  • Mark D. Fricker
    • 4
  • Andreas J. Meyer
    • 2
  • Markus Schwarzländer
    • 5
    Email author
  1. 1.Plant Energy Biology Lab, INRES – Chemical SignallingUniversity of BonnBonnGermany
  2. 2.INRES – Chemical SignallingUniversity of BonnBonnGermany
  3. 3.Department of BiosciencesUniversity of MilanMilanItaly
  4. 4.Department of Plant SciencesUniversity of OxfordOxfordUK
  5. 5.Plant Energy Biology Lab, INRES – Chemical SignallingUniversity of BonnBonnGermany

Personalised recommendations