Advertisement

Plasma Proteomics Biomarkers in Alzheimer’s Disease: Latest Advances and Challenges

  • Robert PerneczkyEmail author
  • Liang-Hao Guo
Part of the Methods in Molecular Biology book series (MIMB, volume 1303)

Abstract

The recent paradigm shift towards a more biologically oriented definition of Alzheimer’s disease (AD) in clinical settings increases the need for sensitive biomarkers that can be applied in population-based settings. Blood plasma is easily accessible and contains a large number of proteins related to cerebral processes. It is therefore an ideal candidate for AD biomarker discovery. The present chapter provides an overview of the current research landscape in relation to blood-based AD biomarkers. Both clinical and methodological issues are covered. A brief summary is given on two relevant laboratory techniques to ascertain blood biomarker changes due to AD; methodological and clinical challenges in the field are also discussed.

Key words

Alzheimer’s disease Dementia Biomarker Early diagnosis Prognosis Proteomics 

References

  1. 1.
    Jack CR Jr, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lopez OL (2013) Mild cognitive impairment. Continuum (Minneap Minn) 19:411–424Google Scholar
  3. 3.
    Mckhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Mckhann GM (2011) Changing concepts of Alzheimer disease. JAMA 305:2458–2459PubMedCrossRefGoogle Scholar
  5. 5.
    Giaccone G, Arzberger T, Alafuzoff I et al (2011) New lexicon and criteria for the diagnosis of Alzheimer’s disease. Lancet Neurol 10:298–299, author reply 300–301PubMedCrossRefGoogle Scholar
  6. 6.
    Blennow K, Hampel H, Weiner M et al (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144PubMedCrossRefGoogle Scholar
  7. 7.
    Frisoni GB, Fox NC, Jack CR Jr et al (2010) The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67–77PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Perneczky R, Tsolakidou A, Arnold A et al (2011) CSF soluble amyloid precursor proteins in the diagnosis of incipient Alzheimer’s disease. Neurology 77:35–38PubMedCrossRefGoogle Scholar
  9. 9.
    Drzezga A, Grimmer T, Henriksen G et al (2008) Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 39:619–633PubMedCrossRefGoogle Scholar
  10. 10.
    Zetterberg H, Tullhog K, Hansson O et al (2010) Low incidence of post-lumbar puncture headache in 1,089 consecutive memory clinic patients. Eur Neurol 63:326–330PubMedCrossRefGoogle Scholar
  11. 11.
    Chan K, Lucas D, Hise D et al (2004) Analysis of the human serum proteome. Clin Proteomics 1:101–226CrossRefGoogle Scholar
  12. 12.
    Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015PubMedGoogle Scholar
  13. 13.
    Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362PubMedCrossRefGoogle Scholar
  14. 14.
    Mortimer JA (2012) The Nun Study: risk factors for pathology and clinical-pathologic correlations. Curr Alzheimer Res 9:621–627PubMedCrossRefGoogle Scholar
  15. 15.
    Valenzuela M, Brayne C, Sachdev P et al (2011) Cognitive lifestyle and long-term risk of dementia and survival after diagnosis in a multicenter population-based cohort. Am J Epidemiol 173:1004–1012PubMedCrossRefGoogle Scholar
  16. 16.
    Noel-Storr AH, Flicker L, Ritchie CW et al (2013) Systematic review of the body of evidence for the use of biomarkers in the diagnosis of dementia. Alzheimers Dement 9:e96–e105PubMedCrossRefGoogle Scholar
  17. 17.
    Jack CR Jr, Dickson DW, Parisi JE et al (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58:750–757PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Driscoll I, Troncoso JC, Rudow G et al (2012) Correspondence between in vivo (11)C-PiB-PET amyloid imaging and postmortem, region-matched assessment of plaques. Acta Neuropathol 124:823–831PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Lewczuk P, Beck G, Ganslandt O et al (2006) International quality control survey of neurochemical dementia diagnostics. Neurosci Lett 409:1–4PubMedCrossRefGoogle Scholar
  20. 20.
    Siderowf A, Xie SX, Hurtig H et al (2010) CSF amyloid {beta} 1-42 predicts cognitive decline in Parkinson disease. Neurology 75:1055–1061PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Amonkar SD, Bertenshaw GP, Chen TH et al (2009) Development and preliminary evaluation of a multivariate index assay for ovarian cancer. PLoS One 4:e4599PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Gurbel PA, Kreutz RP, Bliden KP et al (2008) Biomarker analysis by fluorokine multianalyte profiling distinguishes patients requiring intervention from patients with long-term quiescent coronary artery disease: a potential approach to identify atherosclerotic disease progression. Am Heart J 155:56–61PubMedCrossRefGoogle Scholar
  23. 23.
    Koster MP, Pennings JL, Imholz S et al (2009) Bead-based multiplexed immunoassays to identify new biomarkers in maternal serum to improve first trimester Down syndrome screening. Prenat Diagn 29:857–862PubMedCrossRefGoogle Scholar
  24. 24.
    Steinacker P, Mollenhauer B, Bibl M et al (2004) Heart fatty acid binding protein as a potential diagnostic marker for neurodegenerative diseases. Neurosci Lett 370:36–39PubMedCrossRefGoogle Scholar
  25. 25.
    Burnham SC, Faux NG, Wilson W et al (2014) A blood-based predictor for neocortical Abeta burden in Alzheimer’s disease: results from the AIBL study. Mol Psychiatry 19:519–526PubMedCrossRefGoogle Scholar
  26. 26.
    Guo LH, Alexopoulos P, Wagenpfeil S et al (2013) Plasma proteomics for the identification of Alzheimer disease. Alzheimer Dis Assoc Disord 227:337–342CrossRefGoogle Scholar
  27. 27.
    O’Bryant SE, Xiao G, Edwards M et al (2013) Biomarkers of Alzheimer’s disease among Mexican Americans. J Alzheimers Dis 34:841–849PubMedCentralPubMedGoogle Scholar
  28. 28.
    Hu WT, Chen-Plotkin A, Arnold SE et al (2010) Biomarker discovery for Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease. Acta Neuropathol 120:385–399PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Guo LH, Alexopoulos P, Perneczky R (2013) Heart-type fatty acid binding protein and vascular endothelial growth factor: cerebrospinal fluid biomarker candidates for Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 263:553–560PubMedCrossRefGoogle Scholar
  30. 30.
    Verwey NA, Van Der Flier WM, Blennow K et al (2009) A worldwide multicentre comparison of assays for cerebrospinal fluid biomarkers in Alzheimer’s disease. Ann Clin Biochem 46:235–240PubMedCrossRefGoogle Scholar
  31. 31.
    Carrillo MC, Blennow K, Soares H et al (2013) Global standardization measurement of cerebral spinal fluid for Alzheimer’s disease: an update from the Alzheimer’s Association Global Biomarkers Consortium. Alzheimers Dement 9:137–140PubMedCrossRefGoogle Scholar
  32. 32.
    Shi M, Caudle WM, Zhang J (2009) Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol Dis 35:157–164PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Zellner M, Veitinger M, Umlauf E (2009) The role of proteomics in dementia and Alzheimer’s disease. Acta Neuropathol 118:181–195PubMedCrossRefGoogle Scholar
  34. 34.
    Zolg W (2006) The proteomic search for diagnostic biomarkers: lost in translation? Mol Cell Proteomics 5:1720–1726PubMedCrossRefGoogle Scholar
  35. 35.
    Tian Y, Stamova B, Jickling GC et al (2012) Effects of gender on gene expression in the blood of ischemic stroke patients. J Cereb Blood Flow Metab 32:780–791PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Tang Y, Lu A, Ran R et al (2004) Human blood genomics: distinct profiles for gender, age and neurofibromatosis type 1. Brain Res Mol Brain Res 132:155–167PubMedCrossRefGoogle Scholar
  37. 37.
    Liao IH, Corbett BA, Gilbert DL et al (2010) Blood gene expression correlated with tic severity in medicated and unmedicated patients with Tourette Syndrome. Pharmacogenomics 11:1733–1741PubMedCrossRefGoogle Scholar
  38. 38.
    Tammen H, Schulte I, Hess R et al (2005) Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics 5:3414–3422PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of MedicineThe Imperial College of Science, Technology and MedicineLondonUK
  2. 2.West London Cognitive Disorders Treatment and Research UnitWest London Mental Health TrustLondonUK
  3. 3.Department of Psychiatry and PsychotherapyTechnische Universität MünchenMunichGermany

Personalised recommendations