Systems Biology of Alzheimer's Disease pp 71-99

Part of the Methods in Molecular Biology book series (MIMB, volume 1303) | Cite as

The APP Proteolytic System and Its Interactions with Dynamic Networks in Alzheimer’s Disease


Diseases of aging are often complex and multifactorial, involving many genetic and life course modifiers. Systems biology is becoming an essential tool to investigate disease initiation and disease progression. Alzheimer’s disease (AD) can be used as a case study to investigate the application of systems biology to complex disease. Here we describe approaches to capturing biological data, representing data in terms of networks and interpreting their meaning in relation to the human population. We highlight issues that remain to be addressed both in terms of modeling disease progression and in relating findings to the current understanding of human disease.

Key words

Alzheimer’s disease Amyloid precursor protein Amyloid-beta-protein Presenilin Network modeling Systems biology 


  1. 1.
    Tacutu R, Budovsky A, Yanai H, Fraifeld VE (2011) Molecular links between cellular senescence, longevity and age-related diseases—a systems biology perspective. Aging 3:1178–1191PubMedCentralPubMedGoogle Scholar
  2. 2.
    Arendt T (2003) Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the ‘Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog Neurobiol 71:83–248PubMedGoogle Scholar
  3. 3.
    Ray M, Ruan J, Zhang W (2008) Variations in the transcriptome of Alzheimer’s disease reveal molecular networks involved in cardiovascular diseases. Genome Biol 9:R148PubMedCentralPubMedGoogle Scholar
  4. 4.
    Morris JC, Heyman A, Mohs RC et al (1989) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165PubMedGoogle Scholar
  5. 5.
    McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269PubMedCentralPubMedGoogle Scholar
  6. 6.
    Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486PubMedGoogle Scholar
  7. 7.
    Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13PubMedCentralPubMedGoogle Scholar
  8. 8.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  9. 9.
    Zekry D, Duyckaerts C, Belmin J et al (2003) Cerebral amyloid angiopathy in the elderly: vessel walls changes and relationship with dementia. Acta Neuropathol 10:367–373Google Scholar
  10. 10.
    Attems J, Jellinger K, Thal DR, Van Nostrand W (2011) Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 37:75–93PubMedGoogle Scholar
  11. 11.
    Gatz M, Reynolds CA, Fratiglioni L et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174PubMedGoogle Scholar
  12. 12.
    Pedersen NL, Gatz M, Berg S, Johansson B (2004) How heritable is Alzheimer’s disease late in life? Findings from Swedish twins. Ann Neurol 55:180–185PubMedGoogle Scholar
  13. 13.
    Cedazo-Minguez A, Cowburn RF (2001) Apolipoprotein E: a major piece in the Alzheimer’s disease puzzle. J Cell Mol Med 5:254–266PubMedGoogle Scholar
  14. 14.
    Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093PubMedCentralPubMedGoogle Scholar
  15. 15.
    Crehan H, Holton P, Wray S et al (2012) Complement receptor 1 (CR1) and Alzheimer’s disease. Immunobiology 217:244–250PubMedGoogle Scholar
  16. 16.
    Bertram L, Tanzi RE (2012) The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 107:79–100PubMedGoogle Scholar
  17. 17.
    Schellenberg GD, Montine TJ (2012) The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathol 124:305–323PubMedCentralPubMedGoogle Scholar
  18. 18.
    Brayne C, Ince PG, Keage HA et al (2010) Education, the brain and dementia: neuroprotection or compensation? Brain 133:2210–2216PubMedGoogle Scholar
  19. 19.
    Ma Q (2008) Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neurosci Bull 24:265–270PubMedGoogle Scholar
  20. 20.
    Mattson MP, Chan SL, Duan W (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 82:637–672PubMedGoogle Scholar
  21. 21.
    Xuereb JH, Brayne C, Dufouil C et al (2000) Neuropathological findings in the very old. Results from the first 101 brains of a population-based longitudinal study of dementing disorders. Ann N Y Acad Sci 903:490–496PubMedGoogle Scholar
  22. 22.
    Savva GM, Wharton SB, Ince PG et al (2009) Age, neuropathology, and dementia. N Engl J Med 360:2302–2309PubMedGoogle Scholar
  23. 23.
    MRC-CFAS (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357:169–175Google Scholar
  24. 24.
    Brayne C, Richardson K, Matthews FE et al (2009) Neuropathological correlates of dementia in over-80-year-old brain donors from the population-based Cambridge city over-75 s cohort (CC75C) study. J Alzheimers Dis 18:645–658PubMedGoogle Scholar
  25. 25.
    Nakano T, Moore MJ, Wei F et al (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans Nanobioscience 11:135–148PubMedGoogle Scholar
  26. 26.
    Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7:391–403PubMedGoogle Scholar
  27. 27.
    Ratovitski T, Slunt HH, Thinakaran G et al (1997) Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J Biol Chem 272:24536–24541PubMedGoogle Scholar
  28. 28.
    da Costa CA, Ancolio K, Checler F (1999) C-terminal maturation fragments of presenilin 1 and 2 control secretion of APP alpha and A beta by human cells and are degraded by proteasome. Mol Med 5:160–168PubMedCentralPubMedGoogle Scholar
  29. 29.
    Ogishima S, Mizuno S, Kikuchi M et al (2013) A map of Alzheimer’s disease-signaling pathways: a hope for drug target discovery. Clin Pharmacol Ther 93:399–401PubMedGoogle Scholar
  30. 30.
    Kimberly WT, LaVoie MJ, Ostaszewski BL et al (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100:6382–6387PubMedCentralPubMedGoogle Scholar
  31. 31.
    Kimberly WT, Wolfe MS (2003) Identity and function of gamma-secretase. J Neurosci Res 74:353–360PubMedGoogle Scholar
  32. 32.
    Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 312:1103–1119PubMedGoogle Scholar
  33. 33.
    Rubinstein A, Lyubchenko YL, Sherman S (2009) Dynamic properties of pH-dependent structural organization of the amyloidogenic beta-protein (1–40). Prion 3:31–43PubMedCentralPubMedGoogle Scholar
  34. 34.
    Smith MA, Hirai K, Hsiao K et al (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70:2212–2215PubMedGoogle Scholar
  35. 35.
    Berg JM, Tymoczko JL, Stryer L (2006) Biochemistry, 6th edn. W. H. Freeman and Company, New York, NYGoogle Scholar
  36. 36.
    Hunter S, Brayne C (2012) Relationships between the amyloid precursor protein and its various proteolytic fragments and neuronal systems. Alzheimers Res Ther 4:10PubMedCentralPubMedGoogle Scholar
  37. 37.
    Perreau VM, Orchard S, Adlard PA et al (2010) A domain level interaction network of amyloid precursor protein and Abeta of Alzheimer’s disease. Proteomics 10:2377–2395PubMedGoogle Scholar
  38. 38.
    Aranda B, Blankenburg H, Kerrien S et al (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods 8:528–529PubMedCentralPubMedGoogle Scholar
  39. 39.
    Murphy D (2002) Gene expression studies using microarrays: principles, problems, and prospects. Adv Physiol Educ 26:256–270PubMedGoogle Scholar
  40. 40.
    Baranzini SE (2004) Gene expression profiling in neurological disorders: toward a systems-level understanding of the brain. Neuromolecular Med 6:31–51PubMedGoogle Scholar
  41. 41.
    Hu S, Xie Z, Qian J et al (2011) Functional protein microarray technology. Wiley Interdiscip Rev Syst Biol Med 3:255–268PubMedCentralPubMedGoogle Scholar
  42. 42.
    Sutandy FX, Qian J, Chen CS, Zhu H (2013) Overview of protein microarrays. Curr Protoc Protein Sci. Editorial board, John E Coligan et al. Chapter 27: Unit 27.1. doi:10.1002/0471140864.ps2701s72
  43. 43.
    Kell DB (2010) Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 84:825–889PubMedCentralPubMedGoogle Scholar
  44. 44.
    Alberghina L, Colangelo AM (2006) The modular systems biology approach to investigate the control of apoptosis in Alzheimer’s disease neurodegeneration. BMC Neurosci 7(Suppl 1):S2PubMedCentralPubMedGoogle Scholar
  45. 45.
    Soler-Lopez M, Zanzoni A, Lluis R et al (2011) Interactome mapping suggests new mechanistic details underlying Alzheimer’s disease. Genome Res 21:364–376PubMedCentralPubMedGoogle Scholar
  46. 46.
    Suarez RK, Moyes CD (2012) Metabolism in the age of ‘omes’. J Exp Biol 215:2351–2357PubMedGoogle Scholar
  47. 47.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedGoogle Scholar
  48. 48.
    Tamayev R, Zhou D, D’Adamio L (2009) The interactome of the amyloid beta precursor protein family members is shaped by phosphorylation of their intracellular domains. Mol Neurodegener 4:28PubMedCentralPubMedGoogle Scholar
  49. 49.
    Raiteri M (2006) Functional pharmacology in human brain. Pharmacol Rev 58:162–193PubMedGoogle Scholar
  50. 50.
    Kokjohn TA, Roher AE (2009) Amyloid precursor protein transgenic mouse models and Alzheimer’s disease: understanding the paradigms, limitations, and contributions. Alzheimers Dement 5:340–347PubMedCentralPubMedGoogle Scholar
  51. 51.
    Miller JA, Horvath S, Geschwind DH (2010) Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci U S A 107:12698–12703PubMedCentralPubMedGoogle Scholar
  52. 52.
    Codita A, Winblad B, Mohammed AH (2006) Of mice and men: more neurobiology in dementia. Curr Opin Psychiatry 19:555–563PubMedGoogle Scholar
  53. 53.
    Cohen RM, Rezai-Zadeh K, Weitz TM et al (2013) A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. J Neurosci 33:6245–6256PubMedCentralPubMedGoogle Scholar
  54. 54.
    Barbero-Camps E, Fernandez A, Martinez L et al (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22:3460–3476PubMedCentralPubMedGoogle Scholar
  55. 55.
    Butterfield DA, Poon HF (2005) The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp Gerontol 40:774–783PubMedGoogle Scholar
  56. 56.
    Davidson YS, Raby S, Foulds PG et al (2011) TDP-43 pathological changes in early onset familial and sporadic Alzheimer’s disease, late onset alzheimer’s disease and Down’s syndrome: association with age, hippocampal sclerosis and clinical phenotype. Acta Neuropathol 122:703–713PubMedGoogle Scholar
  57. 57.
    Keage HA, Ince PG, Matthews FE et al (2012) Impact of less common and “disregarded” neurodegenerative pathologies on dementia burden in a population-based cohort. J Alzheimers Dis 28:485–493PubMedGoogle Scholar
  58. 58.
    Heber S, Herms J, Gajic V et al (2000) Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci 20:7951–7963PubMedGoogle Scholar
  59. 59.
    De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113:1857–1870PubMedGoogle Scholar
  60. 60.
    Small DH, Clarris HL, Williamson TG et al (1999) Neurite-outgrowth regulating functions of the amyloid protein precursor of Alzheimer’s disease. J Alzheimers Dis 1:275–285PubMedGoogle Scholar
  61. 61.
    Small DH, Nurcombe V, Reed G et al (1994) A heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the regulation of neurite outgrowth. J Neurosci 14:2117–2127PubMedGoogle Scholar
  62. 62.
    Priller C, Bauer T, Mitteregger G et al (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26:7212–7221PubMedGoogle Scholar
  63. 63.
    Hoe HS, Rebeck GW (2008) Functional interactions of APP with the apoE receptor family. J Neurochem 106:2263–2271PubMedGoogle Scholar
  64. 64.
    Okamoto T, Takeda S, Murayama Y, Ogata E, Nishimoto I (1995) Ligand-dependent G protein coupling function of amyloid transmembrane precursor. J Biol Chem 270:4205–4208PubMedGoogle Scholar
  65. 65.
    Roncarati R, Sestan N, Scheinfeld MH et al (2002) The gamma-secretase-generated intracellular domain of beta-amyloid precursor protein binds Numb and inhibits notch signaling. Proc Natl Acad Sci U S A 99:7102–7107PubMedCentralPubMedGoogle Scholar
  66. 66.
    Kogel D, Schomburg R, Schurmann T et al (2003) The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis. J Neurochem 87:248–256PubMedGoogle Scholar
  67. 67.
    Georgopoulou N, McLaughlin M, McFarlane I, Breen KC (2001) The role of post-translational modification in beta-amyloid precursor protein processing. Biochem Soc Symp 67:23–36PubMedGoogle Scholar
  68. 68.
    Bush AI, Pettingell WH Jr, de Paradis M et al (1994) The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily. J Biol Chem 269:26618–26621PubMedGoogle Scholar
  69. 69.
    Williamson TG, Nurcombe V, Beyreuther K et al (1995) Affinity purification of proteoglycans that bind to the amyloid protein precursor of Alzheimer’s disease. J Neurochem 65:2201–2208PubMedGoogle Scholar
  70. 70.
    Hoe HS, Lee KJ, Carney RS et al (2009) Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. J Neurosci 29:7459–7473PubMedCentralPubMedGoogle Scholar
  71. 71.
    Hoe HS, Tran TS, Matsuoka Y et al (2006) DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem 281:35176–35185PubMedGoogle Scholar
  72. 72.
    Dahms SO, Hoefgen S, Roeser D et al (2010) Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. Proc Natl Acad Sci U S A 107:5381–5386PubMedCentralPubMedGoogle Scholar
  73. 73.
    Fassa A, Mehta P, Efthimiopoulos S (2005) Notch 1 interacts with the amyloid precursor protein in a Numb-independent manner. J Neurosci Res 82:214–224PubMedGoogle Scholar
  74. 74.
    McLoughlin DM, Miller CC (2008) The FE65 proteins and Alzheimer’s disease. J Neurosci Res 86:744–754PubMedGoogle Scholar
  75. 75.
    Rebeck GW, Moir RD, Mui S et al (2001) Association of membrane-bound amyloid precursor protein APP with the apolipoprotein E receptor LRP. Brain Res Mol Brain Res 87:238–245PubMedGoogle Scholar
  76. 76.
    Pietrzik CU, Busse T, Merriam DE et al (2002) The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J 21:5691–5700PubMedCentralPubMedGoogle Scholar
  77. 77.
    Taru H, Suzuki T (2009) Regulation of the physiological function and metabolism of AbetaPP by AbetaPP binding proteins. J Alzheimers Dis 18:253–265PubMedGoogle Scholar
  78. 78.
    Muresan Z, Muresan V (2005) c-Jun NH2-terminal kinase-interacting protein-3 facilitates phosphorylation and controls localization of amyloid-beta precursor protein. J Neurosci 25:3741–3751PubMedGoogle Scholar
  79. 79.
    Suzuki T, Nakaya T (2008) Regulation of amyloid beta-protein precursor by phosphorylation and protein interactions. J Biol Chem 283:29633–29637PubMedCentralPubMedGoogle Scholar
  80. 80.
    Lee MS, Kao SC, Lemere CA et al (2003) APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163:83–95PubMedCentralPubMedGoogle Scholar
  81. 81.
    Perez RG, Soriano S, Hayes JD et al (1999) Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. J Biol Chem 274:18851–18856PubMedGoogle Scholar
  82. 82.
    Loerch PM, Lu T, Dakin KA et al (2008) Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 3:e3329PubMedCentralPubMedGoogle Scholar
  83. 83.
    Weidemann A, Konig G, Bunke D et al (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57:115–126PubMedGoogle Scholar
  84. 84.
    Savage MJ, Trusko SP, Howland DS et al (1998) Turnover of amyloid beta-protein in mouse brain and acute reduction of its level by phorbol ester. J Neurosci 18:1743–1752PubMedGoogle Scholar
  85. 85.
    Lyckman AW, Confaloni AM, Thinakaran G et al (1998) Post-translational processing and turnover kinetics of presynaptically targeted amyloid precursor superfamily proteins in the central nervous system. J Biol Chem 273:11100–11106PubMedGoogle Scholar
  86. 86.
    Morales-Corraliza J, Mazzella MJ, Berger JD et al (2009) In vivo turnover of tau and APP metabolites in the brains of wild-type and Tg2576 mice: greater stability of sAPP in the beta-amyloid depositing mice. PLoS One 4:e7134PubMedCentralPubMedGoogle Scholar
  87. 87.
    Wang R, Sweeney D, Gandy SE, Sisodia SS (1996) The profile of soluble amyloid beta protein in cultured cell media. Detection and quantification of amyloid beta protein and variants by immunoprecipitation-mass spectrometry. J Biol Chem 271:31894–31902PubMedGoogle Scholar
  88. 88.
    Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70:1–32PubMedGoogle Scholar
  89. 89.
    Selkoe DJ (1994) Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 17:489–517PubMedGoogle Scholar
  90. 90.
    Pellegrini L, Passer BJ, Tabaton M et al (1999) Alternative, non-secretase processing of Alzheimer’s beta-amyloid precursor protein during apoptosis by caspase-6 and -8. J Biol Chem 274:21011–21016PubMedGoogle Scholar
  91. 91.
    McPhie DL, Golde T, Eckman CB et al (2001) beta-Secretase cleavage of the amyloid precursor protein mediates neuronal apoptosis caused by familial Alzheimer’s disease mutations. Brain Res Mol Brain Res 97:103–113PubMedGoogle Scholar
  92. 92.
    Cole SL, Vassar R (2007) The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener 2:22PubMedCentralPubMedGoogle Scholar
  93. 93.
    Sun X, He G, Song W (2006) BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20:1369–1376PubMedGoogle Scholar
  94. 94.
    Slack BE, Ma LK, Seah CC (2001) Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-alpha converting enzyme. Biochem J 357:787–794PubMedCentralPubMedGoogle Scholar
  95. 95.
    Allinson TM, Parkin ET, Turner AJ, Hooper NM (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 74:342–352PubMedGoogle Scholar
  96. 96.
    Yang P, Baker KA, Hagg T (2006) The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 79:73–94PubMedGoogle Scholar
  97. 97.
    Talamagas AA, Efthimiopoulos S, Tsilibary EC et al (2007) Abeta(1–40)-induced secretion of matrix metalloproteinase-9 results in sAPPalpha release by association with cell surface APP. Neurobiol Dis 28:304–315PubMedGoogle Scholar
  98. 98.
    Deuss M, Reiss K, Hartmann D (2008) Part-time alpha-secretases: the functional biology of ADAM 9, 10 and 17. Curr Alzheimer Res 5:187–201PubMedGoogle Scholar
  99. 99.
    Hartmann D, Tournoy J, Saftig P et al (2001) Implication of APP secretases in notch signaling. J Mol Neurosci 17:171–181PubMedGoogle Scholar
  100. 100.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289PubMedGoogle Scholar
  101. 101.
    Arribas J, Bech-Serra JJ, Santiago-Josefat B (2006) ADAMs, cell migration and cancer. Cancer Metastasis Rev 25:57–68PubMedGoogle Scholar
  102. 102.
    Gralle M, Oliveira CL, Guerreiro LH et al (2006) Solution conformation and heparin-induced dimerization of the full-length extracellular domain of the human amyloid precursor protein. J Mol Biol 357:493–508PubMedGoogle Scholar
  103. 103.
    Gralle M, Botelho MG, Wouters FS (2009) Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J Biol Chem 284:15016–15025PubMedCentralPubMedGoogle Scholar
  104. 104.
    Furukawa K, Sopher BL, Rydel RE et al (1996) Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J Neurochem 67:1882–1896PubMedGoogle Scholar
  105. 105.
    Ghosal K, Vogt DL, Liang M et al (2009) Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci U S A 106:18367–18372PubMedCentralPubMedGoogle Scholar
  106. 106.
    Copanaki E, Chang S, Vlachos A et al (2010) sAPPalpha antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Mol Cell Neurosci 44:386–393PubMedGoogle Scholar
  107. 107.
    Sennvik K, Fastbom J, Blomberg M et al (2000) Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 278:169–172PubMedGoogle Scholar
  108. 108.
    Hook V, Schechter I, Demuth HU, Hook G (2008) Alternative pathways for production of beta-amyloid peptides of Alzheimer’s disease. Biol Chem 389:993–1006PubMedCentralPubMedGoogle Scholar
  109. 109.
    Sun X, Wang Y, Qing H et al (2005) Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes. FASEB J 19:739–749PubMedGoogle Scholar
  110. 110.
    Li Q, Sudhof TC (2004) Cleavage of amyloid-beta precursor protein and amyloid-beta precursor-like protein by BACE 1. J Biol Chem 279:10542–10550PubMedGoogle Scholar
  111. 111.
    Lichtenthaler SF, Dominguez DI, Westmeyer GG et al (2003) The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1. J Biol Chem 278:48713–48719PubMedGoogle Scholar
  112. 112.
    Scholefield Z, Yates EA, Wayne G et al (2003) Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer’s beta-secretase. J Cell Biol 163:97–107PubMedCentralPubMedGoogle Scholar
  113. 113.
    Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989PubMedCentralPubMedGoogle Scholar
  114. 114.
    Vetrivel KS, Zhang YW, Xu H, Thinakaran G (2006) Pathological and physiological functions of presenilins. Mol Neurodegener 1:4PubMedCentralPubMedGoogle Scholar
  115. 115.
    Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403PubMedGoogle Scholar
  116. 116.
    Zhao G, Cui MZ, Mao G et al (2005) gamma-Cleavage is dependent on zeta-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J Biol Chem 280:37689–37697PubMedGoogle Scholar
  117. 117.
    Qi-Takahara Y, Morishima-Kawashima M, Tanimura Y et al (2005) Longer forms of amyloid beta protein: implications for the mechanism of intramembrane cleavage by gamma-secretase. J Neurosci 25:436–445PubMedGoogle Scholar
  118. 118.
    Okochi M, Tagami S, Yanagida K et al (2013) Gamma-secretase modulators and presenilin 1 mutants act differently on presenilin/gamma-secretase function to cleave Abeta42 and Abeta43. Cell Rep 3:42–51PubMedGoogle Scholar
  119. 119.
    Chen F, Hasegawa H, Schmitt-Ulms G et al (2006) TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity. Nature 440:1208–1212PubMedGoogle Scholar
  120. 120.
    Lleo A, Waldron E, von Arnim CA et al (2005) Low density lipoprotein receptor-related protein (LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP) for gamma-secretase. J Biol Chem 280:27303–27309PubMedGoogle Scholar
  121. 121.
    von Arnim CA, Kinoshita A, Peltan ID et al (2005) The low density lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem 280:17777–17785Google Scholar
  122. 122.
    Shen J, Kelleher RJ 3rd (2007) The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S A 104:403–409PubMedCentralPubMedGoogle Scholar
  123. 123.
    Uemura K, Kuzuya A, Shimohama S (2004) Protein trafficking and Alzheimer’s disease. Curr Alzheimer Res 1:1–10PubMedGoogle Scholar
  124. 124.
    Boo JH, Sohn JH, Kim JE et al (2008) Rac1 changes the substrate specificity of gamma-secretase between amyloid precursor protein and Notch1. Biochem Biophys Res Commun 372:913–917PubMedGoogle Scholar
  125. 125.
    Liu Y, Zhang YW, Wang X et al (2009) Intracellular trafficking of presenilin 1 is regulated by beta-amyloid precursor protein and phospholipase D1. J Biol Chem 284:12145–12152PubMedCentralPubMedGoogle Scholar
  126. 126.
    Vetrivel KS, Cheng H, Kim SH et al (2005) Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem 280:25892–25900PubMedCentralPubMedGoogle Scholar
  127. 127.
    Bitan G, Teplow DB (2004) Rapid photochemical cross-linking–a new tool for studies of metastable, amyloidogenic protein assemblies. Acc Chem Res 37:357–364PubMedGoogle Scholar
  128. 128.
    Pearson HA, Peers C (2006) Physiological roles for amyloid beta peptides. J Physiol 575:5–10PubMedCentralPubMedGoogle Scholar
  129. 129.
    Saito T, Suemoto T, Brouwers N et al (2011) Potent amyloidogenicity and pathogenicity of Abeta43. Nat Neurosci 14:1023–1032PubMedGoogle Scholar
  130. 130.
    Miravalle L, Tokuda T, Chiarle R et al (2000) Substitutions at codon 22 of Alzheimer’s abeta peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J Biol Chem 275:27110–27116PubMedGoogle Scholar
  131. 131.
    Murakami K, Irie K, Morimoto A et al (2002) Synthesis, aggregation, neurotoxicity, and secondary structure of various A beta 1–42 mutants of familial Alzheimer’s disease at positions 21–23. Biochem Biophys Res Commun 294:5–10PubMedGoogle Scholar
  132. 132.
    Kakio A, Yano Y, Takai D et al (2004) Interaction between amyloid beta-protein aggregates and membranes. J Pept Sci 10:612–621PubMedGoogle Scholar
  133. 133.
    Klug GM, Losic D, Subasinghe SS et al (2003) Beta-amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH. Eur J Biochem 270:4282–4293PubMedGoogle Scholar
  134. 134.
    Zhao JH, Liu HL, Liu YF et al (2009) Molecular dynamics simulations to investigate the aggregation behaviors of the Abeta(17–42) oligomers. J Biomol Struct Dyn 26:481–490PubMedGoogle Scholar
  135. 135.
    Zheng J, Jang H, Ma B et al (2007) Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities. Biophys J 93:3046–3057PubMedCentralPubMedGoogle Scholar
  136. 136.
    Miller Y, Ma B, Nussinov R (2009) Polymorphism of Alzheimer’s Abeta17-42 (p3) oligomers: the importance of the turn location and its conformation. Biophys J 97:1168–1177PubMedCentralPubMedGoogle Scholar
  137. 137.
    Thal DR, Sassin I, Schultz C et al (1999) Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta. J Neuropathol Exp Neurol 58:210–216PubMedGoogle Scholar
  138. 138.
    Liu R, McAllister C, Lyubchenko Y, Sierks MR (2004) Residues 17–20 and 30–35 of beta-amyloid play critical roles in aggregation. J Neurosci Res 75:162–171PubMedGoogle Scholar
  139. 139.
    Wei W, Norton DD, Wang X, Kusiak JW (2002) Abeta 17–42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain 125:2036–2043PubMedGoogle Scholar
  140. 140.
    White AR, Maher F, Brazier MW et al (2003) Diverse fibrillar peptides directly bind the Alzheimer’s amyloid precursor protein and amyloid precursor-like protein 2 resulting in cellular accumulation. Brain Res 966:231–244PubMedGoogle Scholar
  141. 141.
    Beckman M, Holsinger RM, Small DH (2006) Heparin activates beta-secretase (BACE1) of Alzheimer’s disease and increases autocatalysis of the enzyme. Biochemistry 45:6703–6714PubMedGoogle Scholar
  142. 142.
    Bame KJ, Danda J, Hassall A, Tumova S (1997) Abeta(1–40) prevents heparanase-catalyzed degradation of heparan sulfate glycosaminoglycans and proteoglycans in vitro. A role for heparan sulfate proteoglycan turnover in Alzheimer’s disease. J Biol Chem 272:17005–17011PubMedGoogle Scholar
  143. 143.
    Klajnert B, Cortijo-Arellano M, Bryszewska M, Cladera J (2006) Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer’s and prion diseases. Biochem Biophys Res Commun 339:577–582PubMedGoogle Scholar
  144. 144.
    Bergamaschini L, Donarini C, Rossi E et al (2002) Heparin attenuates cytotoxic and inflammatory activity of Alzheimer amyloid-beta in vitro. Neurobiol Aging 23:531–536PubMedGoogle Scholar
  145. 145.
    Winkler K, Scharnagl H, Tisljar U et al (1999) Competition of Abeta amyloid peptide and apolipoprotein E for receptor-mediated endocytosis. J Lipid Res 40:447–455PubMedGoogle Scholar
  146. 146.
    Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357PubMedGoogle Scholar
  147. 147.
    Svedruzic ZM, Popovic K, Smoljan I, Sendula-Jengic V (2012) Modulation of gamma-secretase activity by multiple enzyme-substrate interactions: implications in pathogenesis of Alzheimer’s disease. PLoS One 7:e32293PubMedCentralPubMedGoogle Scholar
  148. 148.
    Yan Y, Wang C (2006) Abeta42 is more rigid than Abeta40 at the C terminus: implications for Abeta aggregation and toxicity. J Mol Biol 364:853–862PubMedGoogle Scholar
  149. 149.
    Lee DH, Wang HY (2003) Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to beta-amyloid1-40 and beta-amyloid1-42. J Neurobiol 55:25–30PubMedGoogle Scholar
  150. 150.
    Zou K, Kim D, Kakio A et al (2003) Amyloid beta-protein (Abeta)1-40 protects neurons from damage induced by Abeta1-42 in culture and in rat brain. J Neurochem 87:609–619PubMedGoogle Scholar
  151. 151.
    Parameshwaran K, Sims C, Kanju P et al (2007) Amyloid beta-peptide Abeta(1–42) but not Abeta(1–40) attenuates synaptic AMPA receptor function. Synapse 61:367–374PubMedGoogle Scholar
  152. 152.
    Chavez-Gutierrez L, Bammens L, Benilova I et al (2012) The mechanism of gamma-secretase dysfunction in familial Alzheimer disease. EMBO J 31:2261–2274PubMedCentralPubMedGoogle Scholar
  153. 153.
    Svedruzic ZM, Popovic K, Sendula-Jengic V (2013) Modulators of gamma-secretase activity can facilitate the toxic side-effects and pathogenesis of Alzheimer’s disease. PLoS One 8:e50759PubMedCentralPubMedGoogle Scholar
  154. 154.
    Orchard S, Salwinski L, Kerrien S et al (2007) The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat Biotechnnol 25:894–898Google Scholar
  155. 155.
    Taylor CF, Paton NW, Lilley KS et al (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893PubMedGoogle Scholar
  156. 156.
    Kasabov N (2010) To spike or not to spike: a probabilistic spiking neuron model. Neural Netw 23:16–19PubMedGoogle Scholar
  157. 157.
    Kasabov N, Schliebs R, Kojima H (2011) Probabilistic computational neurogenetic modeling: from cognitive systems to Alzheimer’s disease. IEEE Trans Auton Ment Dev 3:300–311. doi:10.1109/TAMD.2011.2159839 Google Scholar
  158. 158.
    Kasabov N, Benuskova L, Wysoski SG (2005) Biologically plausible computational neurogenetic models: modeling the interaction between genes, neurons and neural networks. J Comput Theor Nanosci 2:569–573Google Scholar
  159. 159.
    Habeck C, Foster NL, Perneczky R et al (2008) Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. Neuroimage 40:1503–1515PubMedCentralPubMedGoogle Scholar
  160. 160.
    Haense C, Buerger K, Kalbe E et al (2008) CSF total and phosphorylated tau protein, regional glucose metabolism and dementia severity in Alzheimer’s disease. Eur J Neurol 15:1155–1162PubMedGoogle Scholar
  161. 161.
    Desikan RS, Cabral HJ, Hess CP et al (2009) Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain 132:2048–2057PubMedCentralPubMedGoogle Scholar
  162. 162.
    Wang H, Nie F, Huang H et al (2011) Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. Med Image Comput Comput Assist Interv 14:115–123PubMedCentralPubMedGoogle Scholar
  163. 163.
    Cui Y, Liu B, Luo S et al (2011) Identification of conversion from mild cognitive impairment to Alzheimer’s disease using multivariate predictors. PLoS One 6:e21896PubMedCentralPubMedGoogle Scholar
  164. 164.
    Hinrichs C, Singh V, Xu G, Johnson SC (2011) Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 55:574–589PubMedCentralPubMedGoogle Scholar
  165. 165.
    Zhang D, Wang Y, Zhou L et al (2011) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55:856–867PubMedCentralPubMedGoogle Scholar
  166. 166.
    Gray KR, Aljabar P, Heckemann RA et al (2013) Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. Neuroimage 65:167–175PubMedGoogle Scholar
  167. 167.
    Van Essen DC, Ugurbil K (2012) The future of the human connectome. Neuroimage 62:1299–1310PubMedCentralPubMedGoogle Scholar
  168. 168.
    Castellani RJ, Perry G (2012) Pathogenesis and disease-modifying therapy in Alzheimer’s disease: the flat line of progress. Arch Med Res 43:694–698PubMedGoogle Scholar
  169. 169.
    Carrillo MC, Rowe CC, Szoeke C et al (2013) Research and standardization in Alzheimer’s trials: reaching international consensus. Alzheimers Dement 9:160–168PubMedGoogle Scholar
  170. 170.
    Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11:1006–1012PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Public Health and Primary Care, Institute of Public HealthUniversity of Cambridge School of Clinical MedicineCambridgeUK

Personalised recommendations