Next Generation Sequencing in Alzheimer’s Disease

  • Lars Bertram
Part of the Methods in Molecular Biology book series (MIMB, volume 1303)


For the first time in the history of human genetics research, it is now both technically feasible and economically affordable to screen individual genomes for novel disease-causing mutations at base-pair resolution using “next-generation sequencing” (NGS). One popular aim in many of today’s NGS studies is genome resequencing (in part or whole) to identify DNA variants potentially accounting for the “missing heritability” problem observed in many genetically complex traits. Thus far, only relatively few projects have applied these powerful new technologies to search for novel Alzheimer’s disease (AD) related sequence variants. In this review, I summarize the findings from the first NGS-based resequencing studies in AD and discuss their potential implications and limitations. Notable recent discoveries using NGS include the identification of rare susceptibility modifying alleles in APP, TREM2, and PLD3. Several other large-scale NGS projects are currently underway so that additional discoveries can be expected over the coming years.

Key words

Alzheimer’s disease Next-generation sequencing Rare variant association Genome-wide association study GWAS 



This work was sponsored by funding from the Cure Alzheimer Fund, the Fidelity Biosciences Research Initiative, and the German Federal Ministry for Education and Research (BMBF grant #16SV5538).


  1. 1.
    Gatz M, Reynolds CA, Fratiglioni L et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174PubMedCrossRefGoogle Scholar
  2. 2.
    Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555PubMedCrossRefGoogle Scholar
  3. 3.
    Bettens K, Sleegers K, Van Broeckhoven C (2013) Genetic insights in Alzheimer’s disease. Lancet Neurol 12:92–104PubMedCrossRefGoogle Scholar
  4. 4.
    Ridge PG, Ebbert MTW, Kauwe JSK (2013) Genetics of Alzheimer’s disease. Biomed Res Int 2013:254954PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68:270–281PubMedCrossRefGoogle Scholar
  6. 6.
    Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9:768–778PubMedCrossRefGoogle Scholar
  7. 7.
    Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90:1977–1981PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bertram L, McQueen MB, Mullin K et al (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23PubMedCrossRefGoogle Scholar
  9. 9.
    Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zuk O, Hechter E, Sunyaev SR et al (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci U S A 109:1193–1198PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto, Calif) 6:287–303CrossRefGoogle Scholar
  12. 12.
    Eisenstein M (2012) The battle for sequencing supremacy. Nat Biotechnol 30:1023–1026PubMedCrossRefGoogle Scholar
  13. 13.
    Zuk O, Schaffner SF, Samocha K et al (2014) Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A 111:E455–E464PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Vinkhuyzen AA, Wray NR, Yang J et al (2013) Estimation and partition of heritability in human populations using whole-genome analysis methods. Annu Rev Genet 47:75–95PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Goldstein DB, Allen A, Keebler J et al (2013) Sequencing studies in human genetics: design and interpretation. Nat Rev Genet 14:460–470PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kiezun A, Garimella K, Do R et al (2012) Exome sequencing and the genetic basis of complex traits. Nat Genet 44:623–630PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Thomas DC, Yang Z, Yang F (2013) Two-phase and family-based designs for next-generation sequencing studies. Front Genet 4:276PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bamshad MJ, Ng SB, Bigham AW et al (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755PubMedCrossRefGoogle Scholar
  19. 19.
    Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11:415–425PubMedCrossRefGoogle Scholar
  20. 20.
    Sims D, Sudbery I, Ilott NE et al (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132PubMedCrossRefGoogle Scholar
  21. 21.
    Wang S, Xing J (2013) A primer for disease gene prioritization using next-generation sequencing data. Genomics Inform 11:191–199PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Normand R, Yanai I (2013) An introduction to high-throughput sequencing experiments: design and bioinformatics analysis. Methods Mol Biol 1038:1–26PubMedCrossRefGoogle Scholar
  23. 23.
    Ladouceur M, Dastani Z, Aulchenko YS et al (2012) The empirical power of rare variant association methods: results from sanger sequencing in 1,998 individuals. PLoS Genet 8:e1002496PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    1000 Genomes Project Consortium, Abecasis GR, Auton A et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65CrossRefGoogle Scholar
  25. 25.
    Cruts M, Theuns J, Van Broeckhoven C (2012) Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat 33:1340–1344PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Cruchaga C, Haller G, Chakraverty S et al (2012) Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset alzheimer’s disease families. PLoS One 7:e31039PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Jin SC, Pastor P, Cooper B et al (2012) Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer’s disease Ibero-American cohort. Alzheimers Res Ther 4:34PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Benitez BA, Karch CM, Cai Y et al (2013) The PSEN1, p.E318G variant increases the risk of Alzheimer’s disease in APOE-ε4 carriers. PLoS Genet 9:e1003685PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lord J, Turton J, Medway C et al (2012) Next generation sequencing of CLU, PICALM and CR1: pitfalls and potential solutions. Int J Mol Epidemiol Genet 3:262–275PubMedCentralPubMedGoogle Scholar
  30. 30.
    Guerreiro RJ, Beck J, Gibbs JR et al (2010) Genetic variability in CLU and its association with Alzheimer’s disease. PLoS One 5:e9510PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bettens K, Brouwers N, Engelborghs S et al (2012) Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk. Mol Neurodegener 7:3PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ferrari R, Moreno JH, Minhajuddin AT et al (2012) Implication of common and disease specific variants in CLU, CR1, and PICALM. Neurobiol Aging 33:1846.e7–e18CrossRefGoogle Scholar
  33. 33.
    Yu J-T, Ma X-Y, Wang Y-L et al (2013) Genetic variation in clusterin gene and Alzheimer’s disease risk in Han Chinese. Neurobiol Aging 34:1921.e17–e23CrossRefGoogle Scholar
  34. 34.
    Jiang T, Yu J-T, Tan M-S et al (2014) Genetic variation in PICALM and Alzheimer’s disease risk in Han Chinese. Neurobiol Aging 35:934.e1–e3CrossRefGoogle Scholar
  35. 35.
    Ma X-Y, Yu J-T, Tan M-S et al (2014) Missense variants in CR1 are associated with increased risk of Alzheimer’ disease in Han Chinese. Neurobiol Aging 35:443.e17–e21CrossRefGoogle Scholar
  36. 36.
    Lupton MK, Proitsi P, Danillidou M et al (2011) Deep sequencing of the Nicastrin gene in pooled DNA, the identification of genetic variants that affect risk of Alzheimer’s disease. PLoS One 6:e17298PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lupton MK, Proitsi P, Lin K et al (2014) The role of ABCA1 gene sequence variants on risk of Alzheimer’s disease. J Alzheimers Dis 38:897–906PubMedGoogle Scholar
  38. 38.
    Bertram L (2011) Alzheimer’s genetics in the GWAS era: a continuing story of “replications and refutations”. Curr Neurol Neurosci Rep 11:246–253PubMedCrossRefGoogle Scholar
  39. 39.
    Guerreiro RJ, Lohmann E, Kinsella E et al (2012) Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer’s disease. Neurobiol Aging 33:1008.e17–e23CrossRefGoogle Scholar
  40. 40.
    Pottier C, Hannequin D, Coutant S (2012) High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset alzheimer disease. Mol Psychiatry 17:875–879PubMedCrossRefGoogle Scholar
  41. 41.
    Andersen OM, Reiche J, Schmidt V et al (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102:13461–13466PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Lambert J-C, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Cruchaga C, Karch CM, Jin SC et al (2014) Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505:550–554PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Heilmann, Stefanie, Dmitriy Drichel, Jordi Clarimon, Victoria Fernández, André Lacour, Holger Wagner, Mathias Thelen, et al. 2015. “PLD3 in Non-Familial Alzheimer’s Disease.” Nature 520 (7545): E3–5. doi:10.1038/nature14039.Google Scholar
  45. 45.
    Hooli, Basavaraj V., Christina M. Lill, Kristina Mullin, Dandi Qiao, Christoph Lange, Lars Bertram, and Rudolph E. Tanzi. 2015. “PLD3 Gene Variants and Alzheimer’s Disease.” Nature 520 (7545): E7–8. doi:10.1038/nature14040.Google Scholar
  46. 46.
    Lambert, Jean-Charles, Benjamin Grenier-Boley, Céline Bellenguez, Florence Pasquier, Dominique Campion, Jean-Francois Dartigues, Claudine Berr, Christophe Tzourio, and Philippe Amouyel. 2015. “PLD3 and Sporadic Alzheimer’s Disease Risk.” Nature 520 (7545): E1. doi:10.1038/nature14036.Google Scholar
  47. 47.
    Van der Lee, Sven J., Henne Holstege, Tsz Hang Wong, Johanna Jakobsdottir, Joshua C. Bis, Vincent Chouraki, Jeroen G. J. van Rooij, et al. 2015. “PLD3 Variants in Population Studies.” Nature 520 (7545): E2–3. doi:10.1038/nature14038.Google Scholar
  48. 48.
    Cai D, Zhong M, Wang R et al (2006) Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer’s disease-linked presenilin-1 mutant neurons. Proc Natl Acad Sci U S A 103:1936–1940PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Oliveira TG, Chan RB, Tian H et al (2010) Phospholipase d2 ablation ameliorates Alzheimer’s disease-linked synaptic dysfunction and cognitive deficits. J Neurosci 30:16419–16428PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Jonsson T, Atwal JK, Steinberg S et al (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99PubMedCrossRefGoogle Scholar
  51. 51.
    Jonsson T, Stefansson H, Steinberg S et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Kero M, Paetau A, Polvikoski T et al (2013) Amyloid precursor protein (APP) A673T mutation in the elderly Finnish population. Neurobiol Aging 34:1518.e1–e3CrossRefGoogle Scholar
  53. 53.
    Liu Y-W, He Y-H, Zhang Y-X et al (2014) Absence of A673T variant in APP gene indicates an alternative protective mechanism contributing to longevity in Chinese individuals. Neurobiol Aging 35:935.e11–e12CrossRefGoogle Scholar
  54. 54.
    Ting SKS, Chong M-S, Kandiah N et al (2013) Absence of A673T amyloid-β precursor protein variant in Alzheimer’s disease and other neurological diseases. Neurobiol Aging 34:2441.e7–e8CrossRefGoogle Scholar
  55. 55.
    Bamne MN, Demirci FY, Berman S et al (2014) Investigation of an amyloid precursor protein protective mutation (A673T) in a North American case-control sample of late-onset alzheimer’s disease. Neurobiol Aging 35:1779.e15–e16CrossRefGoogle Scholar
  56. 56.
    Peacock ML, Warren JT Jr, Roses AD et al (1993) Novel polymorphism in the A4 region of the amyloid precursor protein gene in a patient without Alzheimer’s disease. Neurology 43:1254–1256PubMedCrossRefGoogle Scholar
  57. 57.
    Lill CM, Liu T, Schjeide BMM et al (2012) Closing the case of APOE in multiple sclerosis: no association with disease risk in over 29 000 subjects. J Med Genet 49:558–562PubMedCrossRefGoogle Scholar
  58. 58.
    Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Pottier C, Wallon D, Rousseau S et al (2013) TREM2 R47H variant as a risk factor for early-onset alzheimer’s disease. J Alzheimers Dis 35:45–49PubMedGoogle Scholar
  60. 60.
    Benitez BA, Cooper B, Pastor P et al (2013) TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiol Aging 34:1711.e15–e17CrossRefGoogle Scholar
  61. 61.
    Bertram L, Parrado AR, Tanzi RE (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1565PubMedGoogle Scholar
  62. 62.
    Benitez BA, Cruchaga C, United States–Spain Parkinson’s Disease Research Group (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1567–1568PubMedCentralPubMedGoogle Scholar
  63. 63.
    Rayaprolu S, Mullen B, Baker M et al (2013) TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener 8:19PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Cady J, Koval ED, Benitez BA et al (2014) TREM2 Variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol 71:449–453PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Lill CM, Rengmark A, Lasse P, Fogh I, Shatunov S, Sleiman PM, Wang LS et al. (2015) The role of TREM2 R47H as a risk factor for Alzheimer’s Disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s sisease.” Alzheimer’s & Dementia; doi: 10.1016/j.jalz.2014.12.009
  66. 66.
    Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184:92–99PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Platform for Genome Analytics, Institutes of Neurogenetics and Integrative and Experimental GenomicsUniversity of LübeckLübeckGermany

Personalised recommendations