Yeast as a Model for Alzheimer’s Disease: Latest Studies and Advanced Strategies

  • Mathias Verduyckt
  • Hélène Vignaud
  • Tine Bynens
  • Jeff Van den Brande
  • Vanessa Franssens
  • Christophe Cullin
  • Joris Winderickx
Part of the Methods in Molecular Biology book series (MIMB, volume 1303)


The yeast Saccharomyces cerevisiae, a unicellular eukaryotic model, has enabled major breakthroughs in our understanding of a plethora of cellular and molecular processes. Today, a ‘re-invention’ of its use in fundamental and applied research is paving the way for a better understanding of the mechanisms causing neurodegeneration. The increasing emergence of neurodegenerative disorders is becoming more and more problematic in our ageing society. Most prevalent is Alzheimer’s disease (AD), affecting more than 35 million people worldwide (Abbott, Nature 475, S2–S4, 2011) and causing an enormous burden on a personal and communal level. The disease is characterized by two major pathological hallmarks: extracellular amyloid plaques consisting mainly of deposits of amyloid β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs), consisting mainly of aggregates of hyperphosphorylated tau protein. Despite the huge importance of thoroughly understanding the underlying molecular mechanisms of neurodegeneration, progress has been slow. However, multiple complementary research methods are proving their value, particularly with the work done with S. cerevisiae, which combines well-established, fast genetic and molecular techniques with the ability to faithfully capture key molecular aspects of neurodegeneration. In this review chapter, we focus on the considerable progress made using S. cerevisiae as a model system for Alzheimer’s disease.

Key words

Saccharomyces Yeast Model Alzheimer’s disease Amyloid beta Tau 


  1. 1.
    Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274(546):563–567Google Scholar
  2. 2.
    Suter B, Auerbach D, Stagljar I (2006) Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 40:625–644PubMedCrossRefGoogle Scholar
  3. 3.
    Christie KR, Hong EL, Cherry JM (2009) Functional annotations for the Saccharomyces cerevisiae genome: the knowns and the known unknowns. Trends Microbiol 17:286–294PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Science 277:1259–1260PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Foury F (1997) Human genetic diseases: a cross-talk between man and yeast. Gene 195:1–10PubMedCrossRefGoogle Scholar
  6. 6.
    Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41PubMedCrossRefGoogle Scholar
  7. 7.
    Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906PubMedCrossRefGoogle Scholar
  8. 8.
    Hu Y, Rolfs A, Bhullar B et al (2007) Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae. Genome Res 17:536–543PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Jones GM, Stalker J, Humphray S et al (2008) A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat Methods 5:239–241PubMedCrossRefGoogle Scholar
  10. 10.
    DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686PubMedCrossRefGoogle Scholar
  11. 11.
    Hoon S, St Onge RP, Giaever G et al (2008) Yeast chemical genomics and drug discovery: an update. Trends Pharmacol Sci 29:499–504PubMedCrossRefGoogle Scholar
  12. 12.
    Parsons AB, Lopez A, Givoni IE et al (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126:611–625PubMedCrossRefGoogle Scholar
  13. 13.
    Mager WH, Winderickx J (2005) Yeast as a model for medical and medicinal research. Trends Pharmacol Sci 26:265–273PubMedCrossRefGoogle Scholar
  14. 14.
    Khurana V, Lindquist S (2010) Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker’s yeast? Nat Rev Neurosci 11:436–449PubMedCrossRefGoogle Scholar
  15. 15.
    Winderickx J, Delay C, De Vos A et al (2008) Protein folding diseases and neurodegeneration: lessons learned from yeast. Biochim Biophys Acta 1783:1381–1395PubMedCrossRefGoogle Scholar
  16. 16.
    Franssens V, Bynens T, Van den Brande J et al (2013) The benefits of humanized yeast models to study Parkinson’s disease. Oxid Med Cell Longev 2013:760629PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zabrocki P, Pellens K, Vanhelmont T et al (2005) Characterization of alpha-synuclein aggregation and synergistic toxicity with protein tau in yeast. FEBS J 272:1386–1400PubMedCrossRefGoogle Scholar
  18. 18.
    Swinnen E, Buttner S, Outeiro TF et al (2011) Aggresome formation and segregation of inclusions influence toxicity of alpha-synuclein and synphilin-1 in yeast. Biochem Soc Trans 39:1476–1481PubMedCrossRefGoogle Scholar
  19. 19.
    Krobitsch S, Lindquist S (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci U S A 97:1589–1594PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Muchowski PJ, Schaffar G, Sittler A et al (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A 97:7841–7846PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Meriin AB, Zhang X, He X et al (2002) Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J Cell Biol 157:997–1004PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Bastow EL, Gourlay CW, Tuite MF (2011) Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis. Biochem Soc Trans 39:1482–1487PubMedCrossRefGoogle Scholar
  23. 23.
    Fu L, Sztul E (2009) ER-associated complexes (ERACs) containing aggregated cystic fibrosis transmembrane conductance regulator (CFTR) are degraded by autophagy. Eur J Cell Biol 88:215–226PubMedCrossRefGoogle Scholar
  24. 24.
    Sergeant N, Delacourte A, Buee L (2005) Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 1739:179–197PubMedCrossRefGoogle Scholar
  25. 25.
    Esler WP, Wolfe MS (2001) A portrait of Alzheimer secretases—new features and familiar faces. Science 293:1449–1454PubMedCrossRefGoogle Scholar
  26. 26.
    De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113:1857–1870PubMedGoogle Scholar
  27. 27.
    Duce JA, Tsatsanis A, Cater MA et al (2010) Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142:857–867PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Kopan R, Ilagan MX (2004) Gamma-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol 5:499–504PubMedCrossRefGoogle Scholar
  29. 29.
    Steiner H, Fluhrer R, Haass C (2008) Intramembrane proteolysis by gamma-secretase. J Biol Chem 283:29627–29631PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Turner PR, O’Connor K, Tate WP et al (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70:1–32PubMedCrossRefGoogle Scholar
  31. 31.
    Ertekin-Taner N (2007) Genetics of Alzheimer’s disease: a centennial review. Neurol Clin 25:611–667PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki T, Araki Y, Yamamoto T et al (2006) Trafficking of Alzheimer’s disease-related membrane proteins and its participation in disease pathogenesis. J Biochem 139:949–955PubMedCrossRefGoogle Scholar
  34. 34.
    Vetrivel KS, Thinakaran G (2006) Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 66(2 Suppl 1):S69–S73PubMedCrossRefGoogle Scholar
  35. 35.
    Almeida CG, Takahashi RH, Gouras GK (2006) Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 26:4277–4288PubMedCrossRefGoogle Scholar
  36. 36.
    Chen X, Yan SD (2006) Mitochondrial Abeta: a potential cause of metabolic dysfunction in Alzheimer’s disease. IUBMB Life 58:686–694PubMedCrossRefGoogle Scholar
  37. 37.
    Reddy PH (2006) Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J Neurochem 96:1–13PubMedCrossRefGoogle Scholar
  38. 38.
    Keating DJ, Chen C, Pritchard MA (2006) Alzheimer’s disease and endocytic dysfunction: clues from the Down syndrome-related proteins, DSCR1 and ITSN1. Ageing Res Rev 5:388–401PubMedCrossRefGoogle Scholar
  39. 39.
    Scragg JL, Fearon IM, Boyle JP et al (2005) Alzheimer’s amyloid peptides mediate hypoxic up-regulation of L-type Ca2+ channels. FASEB J 19:150–152PubMedGoogle Scholar
  40. 40.
    Andersen OM, Schmidt V, Spoelgen R et al (2006) Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry 45:2618–2628PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang H, Komano H, Fuller RS et al (1994) Proteolytic processing and secretion of human beta-amyloid precursor protein in yeast. Evidence for a yeast secretase activity. J Biol Chem 269:27799–27802PubMedGoogle Scholar
  42. 42.
    Zhang W, Espinoza D, Hines V et al (1997) Characterization of beta-amyloid peptide precursor processing by the yeast Yap3 and Mkc7 proteases. Biochim Biophys Acta 1359:110–122PubMedCrossRefGoogle Scholar
  43. 43.
    Luthi U, Schaerer-Brodbeck C, Tanner S et al (2003) Human beta-secretase activity in yeast detected by a novel cellular growth selection system. Biochim Biophys Acta 1620:167–178PubMedCrossRefGoogle Scholar
  44. 44.
    Edbauer D, Winkler E, Regula JT et al (2003) Reconstitution of gamma-secretase activity. Nat Cell Biol 5:486–488PubMedCrossRefGoogle Scholar
  45. 45.
    Sparvero LJ, Patz S, Brodsky JL et al (2007) Proteomic analysis of the amyloid precursor protein fragment C99: expression in yeast. Anal Biochem 370:162–170PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Caine J, Sankovich S, Antony H et al (2007) Alzheimer’s Abeta fused to green fluorescent protein induces growth stress and a heat shock response. FEMS Yeast Res 7:1230–1236PubMedCrossRefGoogle Scholar
  47. 47.
    Treusch S, Hamamichi S, Goodman JL et al (2011) Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science 334:1241–1245PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099PubMedCrossRefGoogle Scholar
  50. 50.
    D’Angelo F, Vignaud H, Di Martino J et al (2013) A yeast model for amyloid-beta aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity. Dis Model Mech 6:206–216PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Bagriantsev S, Liebman S (2006) Modulation of Abeta42 low-n oligomerization using a novel yeast reporter system. BMC Biol 4:32PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Park SK, Pegan SD, Mesecar AD et al (2011) Development and validation of a yeast high-throughput screen for inhibitors of Abeta(4)(2) oligomerization. Dis Model Mech 4:822–831PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Buee L, Bussiere T, Buee-Scherrer V et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130PubMedCrossRefGoogle Scholar
  54. 54.
    Maas T, Eidenmuller J, Brandt R (2000) Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 275:15733–15740PubMedCrossRefGoogle Scholar
  55. 55.
    Brandt R, Leger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 131:1327–1340PubMedCrossRefGoogle Scholar
  56. 56.
    Fulga TA, Elson-Schwab I, Khurana V et al (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9:139–148PubMedCrossRefGoogle Scholar
  57. 57.
    Scales TM, Derkinderen P, Leung KY et al (2011) Tyrosine phosphorylation of tau by the SRC family kinases lck and fyn. Mol Neurodegener 6:12PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Lee G (2005) Tau and src family tyrosine kinases. Biochim Biophys Acta 1739:323–330PubMedCrossRefGoogle Scholar
  59. 59.
    Ittner LM, Gotz J (2011) Amyloid-beta and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:65–72PubMedCrossRefGoogle Scholar
  60. 60.
    Sergeant N, Bretteville A, Hamdane M et al (2008) Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics 5:207–224PubMedCrossRefGoogle Scholar
  61. 61.
    Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159PubMedCrossRefGoogle Scholar
  63. 63.
    De Vos A, Anandhakumar J, Van den Brande J et al (2011) Yeast as a model system to study tau biology. Int J Alzheimers Dis 2011:428970PubMedCentralPubMedGoogle Scholar
  64. 64.
    Vandebroek T, Vanhelmont T, Terwel D et al (2005) Identification and isolation of a hyperphosphorylated, conformationally changed intermediate of human protein tau expressed in yeast. Biochemistry 44:11466–11475PubMedCrossRefGoogle Scholar
  65. 65.
    Carmel G, Mager EM, Binder LI et al (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271:32789–32795PubMedCrossRefGoogle Scholar
  66. 66.
    Uboga NV, Price JL (2000) Formation of diffuse and fibrillar tangles in aging and early Alzheimer’s disease. Neurobiol Aging 21:1–10PubMedCrossRefGoogle Scholar
  67. 67.
    Weaver CL, Espinoza M, Kress Y et al (2000) Conformational change as one of the earliest alterations of tau in Alzheimer’s disease. Neurobiol Aging 21:719–727PubMedCrossRefGoogle Scholar
  68. 68.
    Hallows JL, Chen K, DePinho RA et al (2003) Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. J Neurosci 23:10633–10644PubMedGoogle Scholar
  69. 69.
    Spittaels K, Van den Haute C, Van Dorpe J et al (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155:2153–2165PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Jicha GA, Weaver C, Lane E et al (1999) cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease. J Neurosci 19:7486–7494PubMedGoogle Scholar
  71. 71.
    Zheng-Fischhofer Q, Biernat J, Mandelkow EM et al (1998) Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur J Biochem 252:542–552PubMedCrossRefGoogle Scholar
  72. 72.
    Wen Y, Planel E, Herman M et al (2008) Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci 28:2624–2632PubMedCrossRefGoogle Scholar
  73. 73.
    Vandebroek T, Terwel D, Vanhelmont T et al (2006) Microtubule binding and clustering of human Tau-4R and Tau-P301L proteins isolated from yeast deficient in orthologues of glycogen synthase kinase-3beta or cdk5. J Biol Chem 281:25388–25397PubMedCrossRefGoogle Scholar
  74. 74.
    Vanhelmont T, Vandebroek T, De Vos A et al (2010) Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast. FEMS Yeast Res 10:992–1005PubMedCrossRefGoogle Scholar
  75. 75.
    Gamblin TC, Berry RW, Binder LI (2003) Tau polymerization: role of the amino terminus. Biochemistry 42:2252–2257PubMedCrossRefGoogle Scholar
  76. 76.
    Bobba A, Petragallo VA, Marra E et al (2010) Alzheimer’s proteins, oxidative stress, and mitochondrial dysfunction interplay in a neuronal model of Alzheimer’s disease. Int J Alzheimers Dis 621870, 11 pgGoogle Scholar
  77. 77.
    Martinez A, Portero-Otin M, Pamplona R et al (2010) Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol 20:281–297PubMedCrossRefGoogle Scholar
  78. 78.
    Melov S, Adlard PA, Morten K et al (2007) Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One 2:e536PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Moreira PI, Santos MS, Oliveira CR et al (2008) Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 7:3–10PubMedCrossRefGoogle Scholar
  80. 80.
    Van Loon AP, Pesold-Hurt B, Schatz G (1986) A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci U S A 83:3820–3824PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Van Dyck E, Foury F, Stillman B et al (1992) A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. EMBO J 11:3421–3430PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mathias Verduyckt
    • 1
  • Hélène Vignaud
    • 2
  • Tine Bynens
    • 1
  • Jeff Van den Brande
    • 1
  • Vanessa Franssens
    • 1
  • Christophe Cullin
    • 2
  • Joris Winderickx
    • 1
  1. 1.Laboratory of Functional Biology, Yeast Biotechnology GroupKU LeuvenHeverleeBelgium
  2. 2.Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095Université Bordeaux 2BordeauxFrance

Personalised recommendations