Analysis of Microglial Proliferation in Alzheimer’s Disease

  • Diego Gomez-Nicola
  • V. Hugh Perry
Part of the Methods in Molecular Biology book series (MIMB, volume 1303)


The expansion and activation of the microglial population is a hallmark of many neurodegenerative diseases. Despite this fact, little quantitative information is available for specific neurodegenerative disorders, particularly for Alzheimer’s disease (AD). Determining the degree of local proliferation will not only open avenues into understanding the dynamics of microglial proliferation, but also provide an effective target to design strategies with therapeutic potential. Here we describe immunohistochemical methods to analyse microglial proliferation in both transgenic murine models of AD and in human post-mortem samples, to provide a broad picture of the microglial response at the different experimental levels. The application of a common and universal method to analyse the microglial dynamics across different laboratories will help to understand the contribution of these cells to the pathology of AD and other neurodegenerative diseases.

Key words

Alzheimer’s disease Microglia Proliferation Bromodeoxyuridine (BrdU) Ki67 Phospho Histone H3 CSF1R PU.1 Immunohistochemistry 



The research was funded by the European Union Seventh Framework Programme under grant agreement IEF273243, from Alzheimer Research UK and from the Medical Research Council (MRC). The authors have no conflicting financial interests.


  1. 1.
    Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145PubMedCrossRefGoogle Scholar
  2. 2.
    Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91PubMedCrossRefGoogle Scholar
  3. 3.
    Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Edison P, Archer HA, Gerhard A et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32:412–419PubMedCrossRefGoogle Scholar
  5. 5.
    Dickson DW, Lee SC, Mattiace LA et al (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7:75–83PubMedCrossRefGoogle Scholar
  6. 6.
    Fernandez-Botran R, Ahmed Z, Crespo FA et al (2011) Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism Relat Disord 17:683–688PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Mildner A, Schlevogt B, Kierdorf K et al (2011) Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 3:11159–11171CrossRefGoogle Scholar
  8. 8.
    Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415PubMedCrossRefGoogle Scholar
  9. 9.
    Prinz M, Mildner A (2011) Microglia in the CNS: immigrants from another world. Glia 59:177–187PubMedCrossRefGoogle Scholar
  10. 10.
    Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Ajami B, Bennett JL, Krieger C et al (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543PubMedCrossRefGoogle Scholar
  12. 12.
    Mildner A, Schmidt H, Nitsche M et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553PubMedCrossRefGoogle Scholar
  13. 13.
    Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493PubMedCrossRefGoogle Scholar
  14. 14.
    Akiyama H, Nishimura T, Kondo H et al (1994) Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Res 639:171–174PubMedCrossRefGoogle Scholar
  15. 15.
    Bolmont T, Haiss F, Eicke D et al (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28:4283–4292PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Frautschy SA, Yang F, Irrizarry M et al (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152:307–317PubMedCentralPubMedGoogle Scholar
  17. 17.
    Kamphuis W, Orre M, Kooijman L et al (2012) Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model. Glia 60:615–629PubMedCrossRefGoogle Scholar
  18. 18.
    Sasmono RT, Oceandy D, Pollard JW et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163PubMedCrossRefGoogle Scholar
  19. 19.
    Jung S, Aliberti J, Graemmel P et al (2000) Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Gomez-Nicola D, Valle-Argos B, Pallas-Bazarra N, Nieto-Sampedro M (2011) Interleukin-15 regulates proliferation and self-renewal of adult neural stem cells. Mol Biol Cell 22:1960–1970PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Llorens-Martin M, Trejo JL (2011) Multiple birthdating analyses in adult neurogenesis: a line-up of the usual suspects. Front Neurosci 5:76PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.CNS Inflammation Group, Centre for Biological Sciences, Southampton General HospitalUniversity of SouthamptonSouthamptonUK

Personalised recommendations